
Review on Hybrid Analysis in Android Malware Detection

Asadullah Hill Galibac and B M Mainul Hossainbc

aEmail: bsse0712@iit.du.ac.bd, Cell No: 01678044993, MS Student

bEmail: mainul@iit.du.ac.bd, Cell No: 01911489984, Associate Professor

cInstitute of Information Technology, University of Dhaka, Dhaka, Bangladesh.

aAddress: Institute of Information Technology, University of Dhaka, Dhaka -1000, Dhaka,

Bangladesh.

mailto:bsse0712@iit.du.ac.bd
mailto:mainul@iit.du.ac.bd

A Review on Hybrid Analysis using Machine Learning for Android Malware

Detection

Nowadays Android is the world's most popular mobile operating system. Its

pervasiveness also provokes the enormous growth of Android malware. Using machine

learning methods to detect Android malware, researchers have focused on static analysis

and dynamic analysis for most. But, different evasion techniques by shrewd malware

authors made those techniques inadequate and ineffective. Therefore, recent researchers

have turned their attention to the discovery of an effective strategy to combat. Hybrid

analysis which is a fusion of static analysis and dynamic analysis would be a good

candidate for that as it prevails over the individual shortcomings of static and dynamic

analysis with the cost of complexity. Hybrid analysis has many opportunities as well as

challenges. This research is intended to offer a detailed and systematic review of hybrid

analysis using machine learning techniques for malware detection in Android. It

encompasses leading hybrid analysis research: their contributions, strengths, and

weaknesses. This work also discusses the challenges, opportunities, and future directions

of hybrid analysis in detecting Android malware.

Keywords: Hybrid Analysis, Android Malware Detection, Machine Learning

I Introduction

Android is the leading smartphone operating system (OS) in the world currently: 72.23% of total mobile

OS is Android [1]. Android malware also has evolved significantly with the massive growth of the

Android system as well as upgraded its nature and activities [2]. On average 12,000 new malware

instances are found per day [3]. To defend against that malware phenomenon, researchers emphasize

on Android malware detection to ensure Android mobile application security.

To detect Android malware, three approaches are widely used: static Analysis, dynamic analysis, and

hybrid analysis. Static features like API Calls, Permissions, etc. are used in the static analysis. Dynamic

analysis analyze the application's dynamic behaviour like System Calls, Network Traffic, etc. Hybrid

analysis tends to incorporate both the static and dynamic approaches into a common ground.

Static and dynamic analyzes have their limitations. Currently, malware authors are too smart to evade

these detection techniques. For static analysis, commonly used evasion techniques by the malware

authors are data obfuscation, control flow obfuscation, encryption, reflection, dynamically loaded code,

repackaging, etc. [4]. For dynamic analysis, anti-analysis, mimicry, data obfuscation, misleading

information flows, and function in-directions, etc. are used as evasion techniques [4]. Besides, limited

code coverage lessens the effectiveness of the dynamic analysis.

As static and dynamic analysis have their drawbacks separately, it would be beneficial to merge all

analyzes into one common ground. The approach to hybrid analysis combines both static and dynamic

analyzes to minimize their limitations. Though hybrid analysis is complex enough, it is effective and

feasible according to related research. But comparatively a few works have been performed in hybrid

analysis. Researchers nowadays focus on it because of its effectiveness and potential.

Though there exist many reviews on Android malware detection, none focuses on hybrid analysis. For

instance, Tam et al. [4] reveal the evolution of Android malware and the techniques for detection, but

they do not give substantial emphasis on hybrid analysis. Qamar et al. [5] present an all-inclusive review

on mobile malware, but they nearly overlook the hybrid analysis. Baskaran et al. [6] cover hybrid

analysis imprecisely in their Android malware detection review in parallel with static and dynamic

analysis. Naway et al. [7] focus on deep learning techniques and Feizollah et al. [8] investigate feature

selection for malware analysis. None of them presents an in-depth investigation of hybrid analysis.

Due to the potential of hybrid analysis in malware detection, a conclusive review of the existing research

is necessary. In this work, we offer a comprehensive and systematic review of the hybrid analysis

approach in Android malware detection, analyzed the existing works: their strengths and weaknesses,

and discussed challenges, opportunities, and future directions in this regard. This study is an extension

of our earlier study [9] and a further exploration of hybrid analysis in Android malware detection.

To be specific, this work makes the following contributions:

1) It presents the significance of hybrid analysis over static analysis and dynamic analysis by

assessing their weaknesses and limitations.

2) It analyzes the existing works on hybrid analysis and presents a review of the research.

3) It prompts a discussion on the hybrid analysis’s challenges, opportunities, and future directions.

II Background

A. Android Malware

Android malware is an application running on the Android OS that implicitly or explicitly performs

malicious activities. It includes viruses, worms, ransomware, spyware, and other malicious applications.

It tends to cause - disrupting normal functioning, leaking information, root exploitation, manipulating

data, private content exposed, phishing, disruption of services, etc. [5]. Moreover, malware is growing

exceedingly to keep pace with the immense growth of Android applications. In each month, on average

almost 10 million new malware is introduced [10]. New malware is found in every 10 seconds [11].

B. Detection Techniques

Researchers generally analyze Android malware with the following three approaches: static analysis or

dynamic Analysis, or hybrid Analysis.

Various static features are extracted from source files in the static analysis. According to the static

features, a detection model is built using machine learning techniques to classify Android malware.

Researchers used Androguard, ApkTool, Appknox, DroidMat, etc. tools for static analysis. According

to the existing research [12–16], the most used static features are as follows: Permissions, Intents,

Instructions, Hardware Usage Analysis, Meta-data, Intents, API Calls, and Intents.

The dynamic analysis deals with the dynamic behaviours of an application. In doing so, the application

is to be run on a physical device or in an emulated environment. A detection model is also built here

according to the dynamic features. Researchers commonly used Droidbox, Marvin, AppsPlayground,

DroidLogger, etc. tools for dynamic analysis. According to research [17–20], System Calls, Network

Traffic, File Operations, Network Operations, and Phone Events are the most used dynamic features.

Hybrid analysis incorporates static as well as dynamic features for detecting Android malware. As it

deals with dynamic features in addition to static features, it is computationally more complex. Andrubis,

AndroData, etc. are used by the researchers for hybrid analysis.

C. Drawbacks of Static and Dynamic Analysis

Perhaps alarmingly, the noxious malware developers are aware of the malware detection system and

they use many new-found and crafty evasion techniques to avoid detection. Static analysis faces many

troubles such as data obfuscation, control flow obfuscation, encryption, reflection, dynamically loaded

code, repackaging, etc. [4]. Likewise, dynamic analysis has some drawbacks. In escaping dynamic

analysis, the anti-analysis technique is used frequently by malware authors to detect virtual machines

or emulated environments. If the application detects emulated environments in advance, they will act

as a benign application. By doing so, the dynamic analysis might fail to detect Android malware.

Besides, malware authors use mimicry, data obfuscation, misleading information flows, and function

indirections, etc. to evade dynamic analysis [4]. The biggest weakness of dynamic analysis is limited

code coverage: covering all paths is not feasible when investigating the dynamic behaviours.

III HYBRID ANALYSIS USING MACHINE LEARNING

The hybrid analysis combines static as well as dynamic features for better effectiveness. Firstly, it seeks

to extract the static and dynamic features. After that, those extracted static and dynamic features are

combined to detect malware. Finally, machine learning techniques are used to classify malware. By

incorporating static and dynamic approaches into a common ground, the hybrid analysis leads to more

complexity. So, the detection process is more likely to take more time and effort.

As the hybrid approach is the mixture of static and dynamic approaches, this strategy will resolve

individual weaknesses as well as reap the benefits thereof. For instance, in the case of dynamically

loaded code, the static analysis will not identify malware, but the dynamic analysis can detect malware

in that case. Conversely, a malware could imitate a benign application in an emulated setting, so failing

to detect the malware will result in the dynamic analysis. But the static analysis would detect the

malware using the static features. Thereby, the hybrid approach strengthens the detection process by

combining them. It can also boost robustness, expand code coverage, and discover flaws [4].

IV METHODOLOGY

A state-of-the-art guideline presented by Kitchenham et al. [21] is followed for the systematic literature

review. According to the guideline, to shape a systematic review, developing a review protocol is

compulsory. A summary of the key steps of the review protocol carried in this work is given in the

following subsections.

A. The Rationale for the Review: The hybrid analysis for Android malware detection is a promising

research domain because the weaknesses of the static and dynamic analysis have lessened here. Thus,

this domain's potentiality requires a brief examination of the current literature.

B. Research Questions: The following research questions have been defined for the review:

1) What are the size and source of the dataset used in the existing research?

2) What are the features used in hybrid analysis using machine learning?

3) Which techniques are used in the existing research?

4) Which evaluation metrics are used in the existing research?

5) What are the outcomes of the existing research?

6) What are the strengths and limitations of the existing research?

C. Study Selection Criteria: The literature is selected using the following criteria:

1) Inclusion Criteria:

a. Journal, Conference Proceedings of hybrid analysis using machine learning

b. Date (year) of publication: 2012-2020

2) Exclusion Criteria:

a. Research that incorporates hybrid analysis, but not using machine learning

b. Research that lacks a well-defined methodology and unambiguous contributions

D. Study Quality Assessment: We have scrutinized the selected papers for internal validity, bias, and

external validity. Although there is no consensus on the definition of quality, the CRD Guidelines [22]

and the Cochrane Reviewers Handbook [23] advise that quality correlates insofar as the research

reduces bias and enhances validity within and outside [21].

V SYSTEMATIC LITERATURE REVIEW

In this section, we have resolved the research questions and presented an inclusive systematic review

of hybrid analysis. Table 1 depicts the literature overview of hybrid analysis using machine learning.

A state-of-the-art study - Marvin [24] employs several static and dynamic features in detecting malware.

It uses SVM and Linear Classifiers to build a detection model where Linear Classifiers can detect more

accurately but SVM is faster comparatively. To avoid the obsolescence of its classification model in

the future, it presents a retraining strategy. Marvin’s performance is sound enough as its accuracy is

98.24 % with less than 0.04% false-positive rate. But for previously unseen malware, its accuracy is

close to 90%. Though Marvin considers a lot of features, it overlooks system-level events such as

System Calls: an integral part of the behavioural aspects (dynamic features).

Samadroid [25] presents an on-device malware detection architecture which ensures the resource

efficiency by reducing memory overhead of local devices. It uses a subset of Drebin's [12] features (6

out of 8) and 10 predefined System Calls. Its accuracy is about 98% with a false positive rate of 0.1%.

As it used an outdated dataset, it would fail to fight against recent malware as malware behaviour

changes frequently over time. It also overlooks any additional dynamic features except System Calls.

BRIDEMAID [26] proposes a framework using multi-level and multi-feature analysis. It can detect

polymorphic and composition malware to avoid zero-day attacks. Its accuracy is relatively high

regarding existing works. However, it does not use any benchmark dataset. Also, it reports only

accuracy and FPR, other metrics should be reported to properly evaluate the framework.

OmniDroid [27] fuses several prior tools to extract many static and dynamic features and employs

ensemble-based classifiers. Though they considered only a large feature-set, their performance is

relatively lower than existing works. MADAM [28] concurrently assesses static and dynamic features

at four levels in detecting mischievous activity. Though it gains accuracy of 96.9%, it has high memory

overhead and limited scope (only run in the rooted device, works on post-installed apps).

Hadm [29] incorporates Deep Neural Network for feature extraction. It shows that integrating advanced

features originated from deep learning with the preceding static and dynamic characteristics gives

substantial returns. It achieves 94.7% accuracy while the preceding features gained an accuracy of

93.5%, an improvement of 1.2% with the cost of high complexity. Droid-detector [30] extracted more

than 200 static and dynamic features with the deep neural network. It achieves 96.5% accuracy in

detection. However, it uses a limited dataset and limited types of features.

Mobile-SandBox [31] use Permissions, Services, Receivers, Intents, potentially dangerous functions as

static features and investigates Native Code (Native API Calls) and Network Traffic as dynamic features

to classify malware. However, its evaluation is insufficient as no detection metric is given. Kapratwar

et al. [32] use Permissions and System Calls for hybrid analysis. Its performance (AUC) is significantly

better for static features in comparison with dynamic features. But it uses a small (200 apps) and old

dataset and overlooks other features. Dhanya et al. [33] use API Calls and Permissions for hybrid

analysis. Separability assessment Criteria is used for feature selection. Their performance is insufficient

as no accuracy measure is given. Besides, they do not consider any other features. Liu et al. [34] propose

an Android malware detecting procedure where Permissions, API Calls, and System Calls are used.

Their scheme's detection accuracy is from 93.33% to 99.28% according to experimental results.

Nevertheless, they consider only a small feature-set and their dataset is also limited. Patel et al. [35] use

Genetic algorithm for rule-based malware classification using hybrid features. By assessing more than

231 features, it achieves 96.4% accuracy in malware detection. But it uses a limited dataset and its

execution time and resource consumption are high. Yusof et al. [36] use Permissions, API Calls, and

System Calls while achieving sound performance with respect to accuracy, precision, and recall.

However, its model is trained with the malware samples only which would lead to a biased model.

Also, FPR is high enough in their work.

In short, Permissions and API Calls are the most used static features and System Calls are the most used

dynamic features according to the current research. The most common datasets are Drebin, Contagio,

and Android Malware Genome Project. Besides, most researchers use the Google Play Store and local

app stores to collect benign applications. VirusTotal, VirusShare, etc. sources are also used for malware

samples. In Android malware, the most used machine learning technique is the Support Vector

Machine. Besides, Naive Bayes, Random Forest, J48, Logistic Regression, etc. are also common in the

existing research. The most common evaluation metrics are Accuracy, True Positive Rate (TPR), and

False Positive Rate.

Table 1: SYSTEMATIC LITERATURE OVERVIEW OF HYBRID ANALYSIS USING MACHINE LEARNING

Ref. Static

Features
Dynamic

Features
Dataset

Source
Dataset

Size ML Model Results Limitations

Mobile-

SandBox

(2013)
[31]

Permissions,

Services,

Receivers,
Intents,

Potentially

Native Code

(Native API

Calls) and
Network

Traffic

Asian

markets and

Google Play
Store

40,000 apps Insufficient

evaluation. No

detection
performance is

given. Old dataset.

Dangerous

Functions

Patel et

al.

(2015)
[35]

Permissions,

Intents,

Receivers

SMS, File

Operations,

Native Code,
Network Data,

Droid-Kin,

Contagio

755 apps Genetic

Algorithm,

Information
Gain

Accuracy

96.4%

High execution

time and resource

consumption.
Limited dataset.

Marvin

(2015)
[24]

Permissions,

Intents,
Suspicious

Files, API

Calls,
Developer's

Certificate

Network

Operations,
File

Operations,

Phone Events

Google Play

Store, Virus-
Total,

GenomeProj

ect, Contagio

150,000

apps:
135,000

benign,

15,000
malware

SVM and

Linear
Classifier

Accuracy:

98.24%, FPR:
<0.04%

Overlooking

system-level
events such as

System Calls. Too

many features.
Higher

complexity.

Droid-

detector
(2016)

[30]

Permissions,

API Calls

File

Operations,
Network

Traffic, Phone

Events, SMS

Google Play

Store,
Genome

Project

Contagio

21,760 apps:

20,000
benign, 1761

malware

Deep Belief

Network

Accuracy:

96.7%

Overlooking many

static features and
important dynamic

features like

System Calls.

MADA

M

(2016)
[28]

Permissions,

API Calls

System Calls,

SMS, Phone

Event

Genome

Project,

Virus-Share,
Contagio

2800 apps:

125 malware

families

KNN Accuracy:

96.9%

High memory

overhead. Limited

scope (only run in
rooted device,

post-installed

apps).

Liu et al.
(2016)

[34]

Permissions System Calls Gnome
Project,

Wandoujia
App Market

1000 apps:
1000 benign,

1000
malware

SVM, KNN Accuracy:

93.33%∼99.2

8%, TPR:

94.59%∼99.4

7%, FPR:

0.20%∼

11.01%

Using limited
dataset,

considering few
features

Hadm
(2016)

[29]

Permissions,
API Calls,

Intent

System Call
Sequences

Google Play
and Virus-

Share

5888 apps:
4002 benign,

1886

malware

Deep
Neural

Network,

SVM,
Hierarchi-

cal MKL

Accuracy:
94.7%, FPR:

1.8%

Higher complexity
with respect to

accuracy gains. No

benchmark
dataset. Limited

features set.

BRIDE-

MAID
(2016)

[26]

Permissions,

Meta Info.,
Opcodes

System Calls,

SMS

Google Play

Store, Virus-
Total

12,598 apps:

9804 benign,
2794

malware

SVM Accuracy:

99.7%, FPR:
0.2%

No benchmark

dataset.
Insufficient

evaluation

Kapra-
twar

et al.

(2017)
[32]

Permissions System Calls Google Play
Store, Virus-

Total, Drebin

200 apps:
103 benign,

97 malware

IBk, Nave
Bayes, J48,

Random

Forest,
Logistic

AUC:
0.5844~0.966

0

Overlooking many
static and dynamic

features. Limited

and old dataset.
Insufficient

evaluation

Sama-

droid
(2018)

[25]

Permissions,

API Calls,
Intents, App

Components

System

Calls (10)

Drebin 5,560

malware

Decision

Tree, Naïve
Bayes,

SVM, and
Random

Forest

Accuracy:

91.6%∼

98.97%, TPR:

81.1%∼

98.5%, FPR:

0.03%∼ 7.8%

Overlooking many

dynamic features.
Limited and old

dataset.

Yusof et

al.

(2018)
[36]

API Calls,

Permissions

System Calls Google Play

Store, Drebin

Train: 5,560

malware,

Test: 800
benign

SVM,

Naïve

Bayes,
KNN and

Random

Forest

Accuracy

97.9%, Pre:

98.2%, Rec:
99.4, TPR:

99.4, FPR:

12.4

Model trained

with only malware

which may lead to
biasness. High

false positive rate.

Dhanya
et al.

(2019)

[33]

Permissions API Calls Drebin 400 apps:
200 benign,

200 malware

Nave
Bayes,

SVM, J48

& Random
Forest

F-score:

0.71%∼

0.975,

Precision:74.7

%∼ 97.6%,

Recall:

72.5%∼

97.5%

Limited and old
dataset.

Considering

few features. No
accuracy given.

Omni-
Droid

(2019)

[27]

Permissions,
API Calls,

Intents, Meta

Info., Opcodes

System Calls,
Network Data

Omni-Droid 22,000 apps:
11,000

benign,

11,000

malware

Random
Forest,

Bagging,

Voting

Accuracy:
89.7%,

Precision:

89.7%,

Too many
features, Higher

complexity

regarding

performance gain

VI DISCUSSION

The opportunities, challenges, and limitations of hybrid analysis are discussed in this section.

A. Dataset Inadequacy: Almost 10 million new malware are found each month [10]. But there does

not exist any up-to-date dataset of malware. So, their performance in malware detection is doubtful

considering the vast population of the new malware. Dataset inadequacy is a vital factor as an

appropriate dataset is required for research evaluation. Therefore, it provokes escalating challenges as

well as opportunities for new researchers.

B. Exploring New Features: Most of the existing research only deals with some common features. But

it is more likely that there exist more distinguishable features. For instance, Talha et al. [37] reveal

many unknown characteristics of Android malware, however, it did not integrate any machine learning

technique to detect malware. They reveal that over-privileged permissions are one of the characteristics

of malware. Besides, they uncover that malware's average number of incoming and outgoing

connections, the average size of download and upload, etc. are distinguishable features in malware. It

suggests that there will be decent opportunities in exploring new features.

C. New Malware Family: As existing malware’s behaviour is decoded by the existing tool or research

outcome; malware authors update existing malware families and create new malware families

frequently to evade detection. They try to trick existing detection systems by introducing new behaviour

as well as exhibiting benign behaviour. Consequently, malware detection becomes more challenging.

D. Reducing Complexity: Since the hybrid approach is a combination of static and dynamic analysis,

its overall complexity is higher with respect to time, cost, and effort. Numerous features and malware

families provoke this complexity which may limit and challenge the progression of hybrid analysis.

E. Better Performance: Hybrid analysis exhibits better performance on average than the static and

dynamic approaches and triggers a lot of opportunities. By taking those opportunities and overcoming

the challenges ahead, the hybrid analysis would be a vanguard for malware detection in the future.

F. Lack of Research: Though hybrid analysis is a promising and effective approach in Android

malware detection, there is not enough research in hybrid analysis. A lot of opportunities and research

directions are available right now. Researchers' enthusiastic focus on this field would have been

beneficial to fight against the rising malware authors community.

VII FUTURE DIRECTIONS

The future directions of hybrid analysis in Android malware detection are discussed in this section.

Malware datasets should be updated on a regular basis to assure the effectiveness of the new research

and to justify the feasibility of the existing research. Modern data extraction tools for Android, such as

Androdata, ApkTool, Droidbox, Androguard, etc. can efficiently extract static and dynamic data. Using

those tools and collaborating with benign and malware apps sources (e.g., Google Play Store,

VirusShare, etc.), data inadequacy can be reduced. Also, finding new malware families can be a

promising research direction as malware family is growing exceedingly. How do we detect new

malware families effectively? - would be a prospective research question in this regard.

Besides, looking for more discernible features using deep learning or ensemble learning would create

new research directions for researchers. Apart from that, focusing on the complexity of hybrid analysis

is required. How do we reduce the complexity of hybrid analysis? - would be a prospective focus for

future researchers. Many leading-edge feature selection techniques can be used to reduce the complexity

as there are numerous features incidentally. Reinforcement learning, Deep learning, Bagging, Boosting,

Tree-based, and embedded feature selection techniques can be used for reducing complexity.

VIII CONCLUSION

The hybrid analysis can offer a sound direction in detecting Android malware. According to the existing

studies on hybrid analysis, though its complexity is high relatively, it is a more robust strategy and

performs better in malware detection. As a new research domain, hybrid analysis has many challenges

and limitations like dataset inadequacy, high complexity, exceedingly growing malware, and malware

families, etc. However, this study addresses several opportunities and research directions to overcome

these challenges and limitations. By addressing the strengths and limitations of the hybrid analysis and

pointing out specific challenges, limitations, and future directions, this research seeks to contribute to

academia as well as raise concern for Android mobile application security.

REFERENCES

[1] N. G., 2019, “Android: Market share other stats [infographic]”.

[2] Popper, B., 2017, “Google announces over 2 billion monthly active devices on Android”, The Verge.

[3] Lueg, C., 2018, “Cyber attacks on android devices on the rise”, G DATA.

[4] Tam, K., Feizollah, A., Anuar, N.B., Salleh, R. and Cavallaro, L., 2017, “The evolution of android

malware and android analysis techniques”, ACM Computing Surveys (CSUR), 49(4), pp.1-41.

[5] Qamar, A., Karim, A. and Chang, V., 2019, “Mobile malware attacks: Review, taxonomy & future

directions”, Future Generation Computer Systems, 97, pp.887-909.

[6] Baskaran, B. and Ralescu, A., 2016, “A study of android malware detection techniques and machine

learning”.

[7] Naway, A. and Li, Y., 2018, “A review on the use of deep learning in android malware detection”,

arXiv preprint arXiv:1812.10360.

[8] Feizollah, A., Anuar, N.B., Salleh, R. and Wahab, A.W.A., 2015, “A review on feature selection in

mobile malware detection”, Digital investigation, 13, pp.22-37.

[9] Galib, A.H., Hossain, B. M., 2019, December, “A Systematic Review on Hybrid Analysis using

Machine Learning for Android Malware Detection”, In International Conference on Innovation in

Engineering and Technology (ICIET) 2019.

[10] Av-test, 2019, April, “Malware statistics trends report: Av-test”.

[11] New Jersey Cybersecurity and Communications Integration Cell (NJCCIC), 2018, “Android

malware threat profile”, NJCCIC The Weekly Bulletin.

[12] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K. and Siemens, C.E.R.T., 2014,

February, “Drebin: Effective and explainable detection of android malware in your pocket”, In Ndss

(Vol. 14, pp. 23-26).

[13] Yerima, S.Y., Sezer, S., McWilliams, G. and Muttik, I., 2013, March, “A new android malware

detection approach using bayesian classification”, In 2013 IEEE 27th international conference on

advanced information networking and applications (AINA) (pp. 121-128), IEEE.

[14] Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G. and Stringhini, G., 2016,

“Mamadroid: Detecting android malware by building markov chains of behavioral models”, arXiv

preprint arXiv:1612.04433.

[15] Ghorbanzadeh, M., Chen, Y., Ma, Z., Clancy, T.C. and McGwier, R., 2013, January, “A neural

network approach to category validation of android applications”, In 2013 International Conference on

Computing, Networking and Communications (ICNC) (pp. 740-744), IEEE.

[16] Jerome, Q., Allix, K., State, R. and Engel, T., 2014, June, “Using opcode-sequences to detect

malicious Android applications”, In 2014 IEEE International Conference on Communications (ICC)

(pp. 914-919), IEEE.

[17] Yan, L.K. and Yin, H., 2012, “Droidscope: Seamlessly reconstructing the {OS} and dalvik

semantic views for dynamic android malware analysis”, In Presented as part of the 21st {USENIX}

Security Symposium ({USENIX} Security 12) (pp. 569-584).

[18] Amos, B., Turner, H. and White, J., 2013, July, “Applying machine learning classifiers to dynamic

android malware detection at scale”, In 2013 9th international wireless communications and mobile

computing conference (IWCMC) (pp. 1666-1671), IEEE.

[19] Wu, W.C. and Hung, S.H., 2014, October, “DroidDolphin: a dynamic Android malware detection

framework using big data and machine learning”, In Proceedings of the 2014 Conference on Research

in Adaptive and Convergent Systems (pp. 247-252).

[20] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P. and

Sheth, A.N., 2014, “TaintDroid: an information-flow tracking system for realtime privacy monitoring

on smartphones”, ACM Transactions on Computer Systems (TOCS), 32(2), pp.1-29.

[21] Kitchenham, B. and Charters, S., 2007, “Guidelines for performing systematic literature reviews

in software engineering”.

[22] Khan, K.S., Ter Riet, G., Glanville, J., Sowden, A.J. and Kleijnen, J., 2001, “Undertaking

systematic reviews of research on effectiveness: CRD's guidance for carrying out or commissioning

reviews (No. 4 (2n)”, NHS Centre for Reviews and Dissemination.

[23] Higgins, J.P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J. and Welch, V.A. eds.,

2019, “Cochrane handbook for systematic reviews of interventions”, John Wiley & Sons.

[24] Lindorfer, M., Neugschwandtner, M. and Platzer, C., 2015, July, “Marvin: Efficient and

comprehensive mobile app classification through static and dynamic analysis”, In 2015 IEEE 39th

annual computer software and applications conference (Vol. 2, pp. 422-433), IEEE.

[25] Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H. and Yu, H., 2018, “SAMADroid: a

novel 3-level hybrid malware detection model for android operating system”, IEEE Access, 6, pp.4321-

4339.

[26] Martinelli, F., Mercaldo, F., Saracino, A. and Visaggio, C.A., 2016, December, “I find your

behavior disturbing: Static and dynamic app behavioral analysis for detection of android malware”, In

2016 14th Annual Conference on Privacy, Security and Trust (PST) (pp. 129-136), IEEE.

[27] Martín, A., Lara-Cabrera, R. and Camacho, D., 2019, “Android malware detection through hybrid

features fusion and ensemble classifiers: the AndroPyTool framework and the OmniDroid dataset”,

Information Fusion, 52, pp.128-142.

[28] Saracino, A., Sgandurra, D., Dini, G. and Martinelli, F., 2016, “Madam: Effective and efficient

behavior-based android malware detection and prevention”, IEEE Transactions on Dependable and

Secure Computing, 15(1), pp.83-97.

[29] Xu, L., Zhang, D., Jayasena, N. and Cavazos, J., 2016, September, “Hadm: Hybrid

analysis for detection of malware”, In Proceedings of SAI Intelligent Systems Conference (pp.

702-724), Springer, Cham.

[30] Yuan, Z., Lu, Y. and Xue, Y., 2016. “Droiddetector: android malware characterization and

detection using deep learning”, Tsinghua Science and Technology, 21(1), pp.114-123.

[31] Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T. and Hoffmann, J., 2013, March,

“Mobile-sandbox: having a deeper look into android applications”, In Proceedings of the 28th

Annual ACM Symposium on Applied Computing (pp. 1808-1815).

[32] Kapratwar, A., Di Troia, F. and Stamp, M., 2017, February, “Static and dynamic analysis of

android malware”, In ICISSP (pp. 653-662).

[33] K. D. T. Gireesh Kumar, 2019, “Efficient android malware scanner using hybrid analysis,”

International Journal of Recent Technology and Engineering (TM), vol. 7, pp. 76–80.

[34] Liu, Y., Zhang, Y., Li, H. and Chen, X., 2016, January, “A hybrid malware detecting scheme for

mobile Android applications”, In 2016 IEEE International Conference on Consumer Electronics (ICCE)

(pp. 155-156). IEEE.

[35] Patel, K. and Buddadev, B., 2015, August, “Detection and mitigation of android malware through

hybrid approach”, In International Symposium on Security in Computing and Communication (pp. 455-

463), Springer, Cham.

[36] Yusof, M., Saudi, M.M. and Ridzuan, F., 2018, “Mobile Botnet Classification by using Hybrid

Analysis”, International Journal of Engineering & Technology, 7(4.15), pp.103-108.

[37] A. T. Kabakus and I. A. Dogru, 2015, “An in-depth analysis of android malware using hybrid

techniques”, Digital Investigation, vol. 24, pp. 25– 33, 2018.

