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A Review on Hybrid Analysis using Machine Learning for Android Malware 

Detection 

Nowadays Android is the world's most popular mobile operating system. Its 

pervasiveness also provokes the enormous growth of Android malware. Using machine 

learning methods to detect Android malware, researchers have focused on static analysis 

and dynamic analysis for most. But, different evasion techniques by shrewd malware 

authors made those techniques inadequate and ineffective. Therefore, recent researchers 

have turned their attention to the discovery of an effective strategy to combat. Hybrid 

analysis which is a fusion of static analysis and dynamic analysis would be a good 

candidate for that as it prevails over the individual shortcomings of static and dynamic 

analysis with the cost of complexity. Hybrid analysis has many opportunities as well as 

challenges. This research is intended to offer a detailed and systematic review of hybrid 

analysis using machine learning techniques for malware detection in Android. It 

encompasses leading hybrid analysis research: their contributions, strengths, and 

weaknesses. This work also discusses the challenges, opportunities, and future directions 

of hybrid analysis in detecting Android malware. 
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I Introduction 

Android is the leading smartphone operating system (OS) in the world currently: 72.23% of total mobile 

OS is Android [1]. Android malware also has evolved significantly with the massive growth of the 

Android system as well as upgraded its nature and activities [2]. On average 12,000 new malware 

instances are found per day [3]. To defend against that malware phenomenon, researchers emphasize 

on Android malware detection to ensure Android mobile application security. 

To detect Android malware, three approaches are widely used: static Analysis, dynamic analysis, and 

hybrid analysis. Static features like API Calls, Permissions, etc. are used in the static analysis. Dynamic 



analysis analyze the application's dynamic behaviour like System Calls, Network Traffic, etc. Hybrid 

analysis tends to incorporate both the static and dynamic approaches into a common ground.  

Static and dynamic analyzes have their limitations. Currently, malware authors are too smart to evade 

these detection techniques. For static analysis, commonly used evasion techniques by the malware 

authors are data obfuscation, control flow obfuscation, encryption, reflection, dynamically loaded code, 

repackaging, etc. [4]. For dynamic analysis, anti-analysis, mimicry, data obfuscation, misleading 

information flows, and function in-directions, etc. are used as evasion techniques [4]. Besides, limited 

code coverage lessens the effectiveness of the dynamic analysis. 

As static and dynamic analysis have their drawbacks separately, it would be beneficial to merge all 

analyzes into one common ground. The approach to hybrid analysis combines both static and dynamic 

analyzes to minimize their limitations. Though hybrid analysis is complex enough, it is effective and 

feasible according to related research. But comparatively a few works have been performed in hybrid 

analysis. Researchers nowadays focus on it because of its effectiveness and potential. 

Though there exist many reviews on Android malware detection, none focuses on hybrid analysis. For 

instance, Tam et al. [4] reveal the evolution of Android malware and the techniques for detection, but 

they do not give substantial emphasis on hybrid analysis. Qamar et al. [5] present an all-inclusive review 

on mobile malware, but they nearly overlook the hybrid analysis. Baskaran et al. [6] cover hybrid 

analysis imprecisely in their Android malware detection review in parallel with static and dynamic 

analysis. Naway et al. [7] focus on deep learning techniques and Feizollah et al. [8] investigate feature 

selection for malware analysis. None of them presents an in-depth investigation of hybrid analysis. 

Due to the potential of hybrid analysis in malware detection, a conclusive review of the existing research 

is necessary. In this work, we offer a comprehensive and systematic review of the hybrid analysis 

approach in Android malware detection, analyzed the existing works: their strengths and weaknesses, 

and discussed challenges, opportunities, and future directions in this regard. This study is an extension 

of our earlier study [9] and a further exploration of hybrid analysis in Android malware detection. 

To be specific, this work makes the following contributions: 

1) It presents the significance of hybrid analysis over static analysis and dynamic analysis by 

assessing their weaknesses and limitations. 



2) It analyzes the existing works on hybrid analysis and presents a review of the research. 

3) It prompts a discussion on the hybrid analysis’s challenges, opportunities, and future directions. 

II Background 

A. Android Malware 

Android malware is an application running on the Android OS that implicitly or explicitly performs 

malicious activities. It includes viruses, worms, ransomware, spyware, and other malicious applications. 

It tends to cause - disrupting normal functioning, leaking information, root exploitation, manipulating 

data, private content exposed, phishing, disruption of services, etc. [5]. Moreover, malware is growing 

exceedingly to keep pace with the immense growth of Android applications. In each month, on average 

almost 10 million new malware is introduced [10]. New malware is found in every 10 seconds [11].  

B. Detection Techniques  

Researchers generally analyze Android malware with the following three approaches: static analysis or 

dynamic Analysis, or hybrid Analysis.  

Various static features are extracted from source files in the static analysis. According to the static 

features, a detection model is built using machine learning techniques to classify Android malware. 

Researchers used Androguard, ApkTool, Appknox, DroidMat, etc. tools for static analysis. According 

to the existing research [12–16], the most used static features are as follows: Permissions, Intents, 

Instructions, Hardware Usage Analysis, Meta-data, Intents, API Calls, and Intents. 

The dynamic analysis deals with the dynamic behaviours of an application. In doing so, the application 

is to be run on a physical device or in an emulated environment. A detection model is also built here 

according to the dynamic features. Researchers commonly used Droidbox, Marvin, AppsPlayground, 

DroidLogger, etc. tools for dynamic analysis. According to research [17–20], System Calls, Network 

Traffic, File Operations, Network Operations, and Phone Events are the most used dynamic features. 

Hybrid analysis incorporates static as well as dynamic features for detecting Android malware. As it 

deals with dynamic features in addition to static features, it is computationally more complex. Andrubis, 

AndroData, etc. are used by the researchers for hybrid analysis. 



C. Drawbacks of Static and Dynamic Analysis 

Perhaps alarmingly, the noxious malware developers are aware of the malware detection system and 

they use many new-found and crafty evasion techniques to avoid detection. Static analysis faces many 

troubles such as data obfuscation, control flow obfuscation, encryption, reflection, dynamically loaded 

code, repackaging, etc. [4]. Likewise, dynamic analysis has some drawbacks. In escaping dynamic 

analysis, the anti-analysis technique is used frequently by malware authors to detect virtual machines 

or emulated environments. If the application detects emulated environments in advance, they will act 

as a benign application. By doing so, the dynamic analysis might fail to detect Android malware. 

Besides, malware authors use mimicry, data obfuscation, misleading information flows, and function 

indirections, etc. to evade dynamic analysis [4]. The biggest weakness of dynamic analysis is limited 

code coverage: covering all paths is not feasible when investigating the dynamic behaviours.  

III HYBRID ANALYSIS USING MACHINE LEARNING 

The hybrid analysis combines static as well as dynamic features for better effectiveness. Firstly, it seeks 

to extract the static and dynamic features. After that, those extracted static and dynamic features are 

combined to detect malware. Finally, machine learning techniques are used to classify malware. By 

incorporating static and dynamic approaches into a common ground, the hybrid analysis leads to more 

complexity. So, the detection process is more likely to take more time and effort.  

As the hybrid approach is the mixture of static and dynamic approaches, this strategy will resolve 

individual weaknesses as well as reap the benefits thereof. For instance, in the case of dynamically 

loaded code, the static analysis will not identify malware, but the dynamic analysis can detect malware 

in that case. Conversely, a malware could imitate a benign application in an emulated setting, so failing 

to detect the malware will result in the dynamic analysis. But the static analysis would detect the 

malware using the static features. Thereby, the hybrid approach strengthens the detection process by 

combining them. It can also boost robustness, expand code coverage, and discover flaws [4]. 

IV METHODOLOGY 

A state-of-the-art guideline presented by Kitchenham et al. [21] is followed for the systematic literature 



review. According to the guideline, to shape a systematic review, developing a review protocol is 

compulsory. A summary of the key steps of the review protocol carried in this work is given in the 

following subsections.  

A. The Rationale for the Review: The hybrid analysis for Android malware detection is a promising 

research domain because the weaknesses of the static and dynamic analysis have lessened here. Thus, 

this domain's potentiality requires a brief examination of the current literature. 

B. Research Questions: The following research questions have been defined for the review: 

1) What are the size and source of the dataset used in the existing research? 

2) What are the features used in hybrid analysis using machine learning? 

3) Which techniques are used in the existing research? 

4) Which evaluation metrics are used in the existing research? 

5) What are the outcomes of the existing research? 

6) What are the strengths and limitations of the existing research?  

C. Study Selection Criteria: The literature is selected using the following criteria:  

1) Inclusion Criteria: 

a. Journal, Conference Proceedings of hybrid analysis using machine learning 

b. Date (year) of publication: 2012-2020 

2) Exclusion Criteria: 

a. Research that incorporates hybrid analysis, but not using machine learning 

b. Research that lacks a well-defined methodology and unambiguous contributions 

D. Study Quality Assessment: We have scrutinized the selected papers for internal validity, bias, and 

external validity. Although there is no consensus on the definition of quality, the CRD Guidelines [22] 

and the Cochrane Reviewers Handbook [23] advise that quality correlates insofar as the research 

reduces bias and enhances validity within and outside [21].  

V SYSTEMATIC LITERATURE REVIEW 

In this section, we have resolved the research questions and presented an inclusive systematic review 

of hybrid analysis. Table 1 depicts the literature overview of hybrid analysis using machine learning. 



A state-of-the-art study - Marvin [24] employs several static and dynamic features in detecting malware. 

It uses SVM and Linear Classifiers to build a detection model where Linear Classifiers can detect more 

accurately but SVM is faster comparatively. To avoid the obsolescence of its classification model in 

the future, it presents a retraining strategy. Marvin’s performance is sound enough as its accuracy is 

98.24 % with less than 0.04% false-positive rate. But for previously unseen malware, its accuracy is 

close to 90%. Though Marvin considers a lot of features, it overlooks system-level events such as 

System Calls: an integral part of the behavioural aspects (dynamic features). 

Samadroid [25] presents an on-device malware detection architecture which ensures the resource 

efficiency by reducing memory overhead of local devices. It uses a subset of Drebin's [12] features (6 

out of 8) and 10 predefined System Calls. Its accuracy is about 98% with a false positive rate of 0.1%. 

As it used an outdated dataset, it would fail to fight against recent malware as malware behaviour 

changes frequently over time. It also overlooks any additional dynamic features except System Calls. 

BRIDEMAID [26] proposes a framework using multi-level and multi-feature analysis. It can detect 

polymorphic and composition malware to avoid zero-day attacks. Its accuracy is relatively high 

regarding existing works. However, it does not use any benchmark dataset. Also, it reports only 

accuracy and FPR, other metrics should be reported to properly evaluate the framework.  

OmniDroid [27] fuses several prior tools to extract many static and dynamic features and employs 

ensemble-based classifiers. Though they considered only a large feature-set, their performance is 

relatively lower than existing works. MADAM [28] concurrently assesses static and dynamic features 

at four levels in detecting mischievous activity. Though it gains accuracy of 96.9%, it has high memory 

overhead and limited scope (only run in the rooted device, works on post-installed apps).  

Hadm [29] incorporates Deep Neural Network for feature extraction. It shows that integrating advanced 

features originated from deep learning with the preceding static and dynamic characteristics gives 

substantial returns. It achieves 94.7% accuracy while the preceding features gained an accuracy of 

93.5%, an improvement of 1.2% with the cost of high complexity. Droid-detector [30] extracted more 

than 200 static and dynamic features with the deep neural network. It achieves 96.5% accuracy in 

detection. However, it uses a limited dataset and limited types of features.   

Mobile-SandBox [31] use Permissions, Services, Receivers, Intents, potentially dangerous functions as 



static features and investigates Native Code (Native API Calls) and Network Traffic as dynamic features 

to classify malware. However, its evaluation is insufficient as no detection metric is given. Kapratwar 

et al. [32] use Permissions and System Calls for hybrid analysis. Its performance (AUC) is significantly 

better for static features in comparison with dynamic features. But it uses a small (200 apps) and old 

dataset and overlooks other features. Dhanya et al. [33] use API Calls and Permissions for hybrid 

analysis. Separability assessment Criteria is used for feature selection. Their performance is insufficient 

as no accuracy measure is given. Besides, they do not consider any other features. Liu et al. [34] propose 

an Android malware detecting procedure where Permissions, API Calls, and System Calls are used. 

Their scheme's detection accuracy is from 93.33% to 99.28% according to experimental results. 

Nevertheless, they consider only a small feature-set and their dataset is also limited. Patel et al. [35] use 

Genetic algorithm for rule-based malware classification using hybrid features. By assessing more than 

231 features, it achieves 96.4% accuracy in malware detection. But it uses a limited dataset and its 

execution time and resource consumption are high. Yusof et al. [36] use Permissions, API Calls, and 

System Calls while achieving sound performance with respect to accuracy, precision, and recall. 

However, its model is trained with the malware samples only which would lead to a biased model.  

Also, FPR is high enough in their work. 

In short, Permissions and API Calls are the most used static features and System Calls are the most used 

dynamic features according to the current research. The most common datasets are Drebin, Contagio, 

and Android Malware Genome Project. Besides, most researchers use the Google Play Store and local 

app stores to collect benign applications. VirusTotal, VirusShare, etc. sources are also used for malware 

samples. In Android malware, the most used machine learning technique is the Support Vector 

Machine. Besides, Naive Bayes, Random Forest, J48, Logistic Regression, etc. are also common in the 

existing research. The most common evaluation metrics are Accuracy, True Positive Rate (TPR), and 

False Positive Rate. 

Table 1: SYSTEMATIC LITERATURE OVERVIEW OF HYBRID ANALYSIS USING MACHINE LEARNING 

Ref. Static 

Features 
Dynamic 

Features 
Dataset 

Source 
Dataset 

Size ML Model Results Limitations 

Mobile-

SandBox 

(2013) 
[31] 

Permissions, 

Services, 

Receivers, 
Intents, 

Potentially 

Native Code 

(Native API 

Calls) and 
Network 

Traffic 

Asian 

markets and 

Google Play 
Store 

40,000 apps   Insufficient 

evaluation. No 

detection 
performance is 

given. Old dataset.   



Dangerous 

Functions 

Patel et 

al. 

(2015) 
[35] 

Permissions, 

Intents, 

Receivers 

SMS, File 

Operations, 

Native Code, 
Network Data,  

Droid-Kin, 

Contagio 

755 apps Genetic 

Algorithm, 

Information 
Gain 

Accuracy 

96.4% 

High execution 

time and resource 

consumption. 
Limited dataset. 

Marvin 

(2015) 
[24] 

Permissions, 

Intents, 
Suspicious 

Files, API 

Calls, 
Developer's 

Certificate 

Network 

Operations, 
File 

Operations, 

Phone Events 

Google Play 

Store, Virus-
Total, 

GenomeProj

ect, Contagio 

150,000 

apps: 
135,000 

benign, 

15,000 
malware 

SVM and 

Linear 
Classifier  

Accuracy: 

98.24%, FPR: 
<0.04% 

Overlooking 

system-level 
events such as 

System Calls. Too 

many features. 
Higher 

complexity. 

Droid-

detector 
(2016) 

[30] 

Permissions, 

API Calls 

File 

Operations, 
Network 

Traffic, Phone 

Events, SMS 

Google Play 

Store, 
Genome 

Project 

Contagio 

21,760 apps: 

20,000 
benign, 1761 

malware 

Deep Belief 

Network 

Accuracy: 

96.7%  

Overlooking many 

static features and 
important dynamic 

features like 

System Calls.  

MADA

M 

(2016) 
[28] 

Permissions, 

API Calls 

System Calls, 

SMS, Phone 

Event 

Genome 

Project, 

Virus-Share, 
Contagio 

2800 apps: 

125 malware 

families 

KNN Accuracy: 

96.9% 

High memory 

overhead. Limited 

scope (only run in 
rooted device, 

post-installed 

apps). 

Liu et al. 
(2016) 

[34] 

Permissions System Calls Gnome 
Project, 

Wandoujia 
App Market 

1000 apps: 
1000 benign, 

1000 
malware 

SVM, KNN Accuracy: 

93.33%∼99.2

8%, TPR: 

94.59%∼99.4

7%, FPR: 

0.20%∼ 

11.01% 

Using limited 
dataset, 

considering few 
features 

Hadm 
(2016) 

[29] 

Permissions, 
API Calls, 

Intent 

System Call 
Sequences 

Google Play 
and Virus-

Share 

5888 apps: 
4002 benign, 

1886 

malware 

Deep 
Neural 

Network, 

SVM, 
Hierarchi-

cal MKL 

Accuracy: 
94.7%, FPR: 

1.8% 

Higher complexity 
with respect to 

accuracy gains. No 

benchmark 
dataset. Limited 

features set.  

BRIDE-

MAID 
(2016) 

[26] 

Permissions, 

Meta Info., 
Opcodes 

System Calls, 

SMS 

Google Play 

Store, Virus-
Total 

12,598 apps: 

9804 benign, 
2794 

malware 

SVM Accuracy: 

99.7%, FPR: 
0.2% 

No benchmark 

dataset. 
Insufficient 

evaluation  

Kapra-
twar 

et al. 

(2017) 
[32] 

Permissions System Calls Google Play 
Store, Virus-

Total, Drebin 

200 apps: 
103 benign, 

97 malware 

IBk, Nave 
Bayes, J48, 

Random 

Forest, 
Logistic 

AUC: 
0.5844~0.966

0 

Overlooking many 
static and dynamic 

features. Limited 

and old dataset. 
Insufficient 

evaluation 

Sama-

droid 
(2018) 

[25] 

Permissions, 

API Calls, 
Intents, App 

Components 

System 

Calls (10) 

Drebin 5,560 

malware 

Decision 

Tree, Naïve 
Bayes, 

SVM, and 
Random 

Forest 

Accuracy: 

91.6%∼ 

98.97%, TPR: 

81.1%∼ 

98.5%, FPR: 

0.03%∼ 7.8% 

Overlooking many 

dynamic features. 
Limited and old 

dataset. 

Yusof et 

al. 

(2018) 
[36] 

API Calls, 

Permissions 

System Calls Google Play 

Store, Drebin 

Train: 5,560 

malware, 

Test: 800 
benign 

SVM, 

Naïve 

Bayes, 
KNN and 

Random 

Forest 

Accuracy 

97.9%, Pre: 

98.2%, Rec: 
99.4, TPR: 

99.4, FPR: 

12.4 

Model trained 

with only malware 

which may lead to 
biasness. High 

false positive rate.   

Dhanya 
et al. 

(2019) 

[33] 

Permissions API Calls Drebin 400 apps: 
200 benign, 

200 malware 

Nave 
Bayes, 

SVM, J48 

& Random 
Forest 

F-score: 

0.71%∼ 

0.975, 

Precision:74.7

%∼ 97.6%, 

Recall: 

72.5%∼ 

97.5% 

Limited and old 
dataset. 

Considering 

few features. No 
accuracy given.  

Omni-
Droid 

(2019) 

[27] 

Permissions, 
API Calls, 

Intents, Meta 

Info., Opcodes  

System Calls, 
Network Data 

Omni-Droid 22,000 apps: 
11,000 

benign, 

11,000 

malware 

Random 
Forest, 

Bagging, 

Voting 

Accuracy: 
89.7%, 

Precision: 

89.7%, 

Too many 
features, Higher 

complexity 

regarding 

performance gain 



VI DISCUSSION 

The opportunities, challenges, and limitations of hybrid analysis are discussed in this section. 

A. Dataset Inadequacy: Almost 10 million new malware are found each month [10]. But there does 

not exist any up-to-date dataset of malware. So, their performance in malware detection is doubtful 

considering the vast population of the new malware. Dataset inadequacy is a vital factor as an 

appropriate dataset is required for research evaluation. Therefore, it provokes escalating challenges as 

well as opportunities for new researchers.  

B. Exploring New Features: Most of the existing research only deals with some common features. But 

it is more likely that there exist more distinguishable features. For instance, Talha et al. [37] reveal 

many unknown characteristics of Android malware, however, it did not integrate any machine learning 

technique to detect malware. They reveal that over-privileged permissions are one of the characteristics 

of malware. Besides, they uncover that malware's average number of incoming and outgoing 

connections, the average size of download and upload, etc. are distinguishable features in malware. It 

suggests that there will be decent opportunities in exploring new features.   

C. New Malware Family: As existing malware’s behaviour is decoded by the existing tool or research 

outcome; malware authors update existing malware families and create new malware families 

frequently to evade detection. They try to trick existing detection systems by introducing new behaviour 

as well as exhibiting benign behaviour. Consequently, malware detection becomes more challenging. 

D. Reducing Complexity: Since the hybrid approach is a combination of static and dynamic analysis, 

its overall complexity is higher with respect to time, cost, and effort. Numerous features and malware 

families provoke this complexity which may limit and challenge the progression of hybrid analysis.  

E. Better Performance: Hybrid analysis exhibits better performance on average than the static and 

dynamic approaches and triggers a lot of opportunities. By taking those opportunities and overcoming 

the challenges ahead, the hybrid analysis would be a vanguard for malware detection in the future. 

F. Lack of Research: Though hybrid analysis is a promising and effective approach in Android 

malware detection, there is not enough research in hybrid analysis. A lot of opportunities and research 

directions are available right now. Researchers' enthusiastic focus on this field would have been 



beneficial to fight against the rising malware authors community. 

VII FUTURE DIRECTIONS 

The future directions of hybrid analysis in Android malware detection are discussed in this section. 

Malware datasets should be updated on a regular basis to assure the effectiveness of the new research 

and to justify the feasibility of the existing research. Modern data extraction tools for Android, such as 

Androdata, ApkTool, Droidbox, Androguard, etc. can efficiently extract static and dynamic data. Using 

those tools and collaborating with benign and malware apps sources (e.g., Google Play Store, 

VirusShare, etc.), data inadequacy can be reduced. Also, finding new malware families can be a 

promising research direction as malware family is growing exceedingly. How do we detect new 

malware families effectively? - would be a prospective research question in this regard.    

Besides, looking for more discernible features using deep learning or ensemble learning would create 

new research directions for researchers. Apart from that, focusing on the complexity of hybrid analysis 

is required. How do we reduce the complexity of hybrid analysis? - would be a prospective focus for 

future researchers. Many leading-edge feature selection techniques can be used to reduce the complexity 

as there are numerous features incidentally. Reinforcement learning, Deep learning, Bagging, Boosting, 

Tree-based, and embedded feature selection techniques can be used for reducing complexity.  

VIII CONCLUSION 

The hybrid analysis can offer a sound direction in detecting Android malware. According to the existing 

studies on hybrid analysis, though its complexity is high relatively, it is a more robust strategy and 

performs better in malware detection. As a new research domain, hybrid analysis has many challenges 

and limitations like dataset inadequacy, high complexity, exceedingly growing malware, and malware 

families, etc. However, this study addresses several opportunities and research directions to overcome 

these challenges and limitations. By addressing the strengths and limitations of the hybrid analysis and 

pointing out specific challenges, limitations, and future directions, this research seeks to contribute to 

academia as well as raise concern for Android mobile application security.  
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