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Abstract

Android malware is the key factor for the most security breaches in the android

operating system. Malware authors are sharp-witted enough to evade the typical

antiviruses or obsolete approaches of malware detection. As android malware

generally tries to preserve the facade of a benign application using multifarious

evasion techniques, it is worthy and necessary to take a perceptive approach to

defend them. Detecting android malware effectively and feasibly in advance is the

biggest challenge of this fast-growing digital world.

Typical malware detection techniques, like static analysis, dynamic analysis,

hybrid analysis use full features set to classify malware. But the number of features

is growing exceedingly with the growth of the Android system. These growing

numbers of features make it complex and would misguide classifiers by over-fitting

of data. So, rather than using full features set, analyzing significant features would

help to reduce complexity as well as increase large scale malware detection. Several

works suggest that significant features can adeptly classify malware. However,

those works do not assess the performance of significant features with regard to

the full features set.

This study aims at analyzing significant features for Android malware detec-

tion with consideration of maintaining performance. Permissions, API Calls, and

ensemble features are analyzed distinctly in this study to assess the individual

impact and overall performance of each type of feature. An approach is proposed

in this study to analyze and identify significant features.
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In the proposed approach, the features are incrementally analyzed using several

feature selection techniques. According to the incremental feature selection a well-

suited feature selection technique is selected and a minimal number of significant

features are identified. Afterward, a correlation-based feature elimination strategy

is applied for further reduction of significant features.

Experiments on two benchmark data sets show that the Recursive Feature

Elimination with Random Forest Classifier can effectively identify significant fea-

tures in all cases. Evaluation results indicate that the proposed approach can

notably reduce the size of the features set. The reduced set of significant features

can perform relatively close to the full set of features in terms of accuracy, re-

call, F1-score, AU-ROC curve, and execution time. Furthermore, it reports the

top significant features in malware detection. Finally, it implies that significant

ensemble features are more effective than significant Permissions and API Calls.

Also, significant API Calls perform better than significant Permissions.

This study signifies that significant features would be useful in classifying An-

droid malware effectively while maintaining detection performance. These findings

would accelerate large scale malware detection with consideration of performance.
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Chapter 1

Introduction

Android is the most prevalent mobile operating system (OS) currently: 72.23% of

total mobile OS is Android [1]. Due to the openness, flexibility, and advancement

of the Android platform, users, as well as developers of Android applications, are

increasing day by day. All applications are not intended to serve users, malcontent

developers create malevolent-intentioned malware applications.

Android malware is any kind of Android application which tries to exploit

user’s privacy, system features, or Android operating system. For instance, the

malware tries to leak sensitive user data, disrupt normal functioning, take access

controls, misuse permission, perform policy misconfiguration, etc. With the enor-

mous growth of the Android system, Android malware also has grown significantly

as well as upgraded its nature and activities [2]. On average 12,000 new malware

instances are found per day [3]. To detect these diverse sets of malware, numerous

features are used. These large features set increase complexity of malware detec-

tion. Also, these may misguide the detection system by over-fitting. Therefore,

identifying significant features for malware detection would be conducive. This

study deals with analyzing significant features for malware detection.

The motivation behind the work has been addressed in this chapter. Also, this

chapter includes the research questions and the contribution of this study. At the

1



end of this chapter, a segment is listed on how the article is assembled.

1.1 Motivation

To defend against that malware phenomenon, researchers emphasized on Android

malware detection to ensure Android mobile application security and user’s pri-

vacy. Basically, researchers nowadays have focused on the machine learning ap-

proach for detecting Android malware, as the signature-based approach is being

proved outdated by the malware authors. To detect Android malware, there are

three approaches: Static Analysis, Dynamic Analysis, and Hybrid Analysis.

The static analysis uses the static features of the Android application such as

Permissions, API Calls, etc. The dynamic analysis investigates the dynamic be-

havior of the application running on an emulated environment or on a real device.

These dynamic features/behaviors include System Calls, Network Traffic, etc. Hy-

brid analysis tends to incorporate both the static and dynamic approaches into a

common ground. Static and dynamic analyses have their own limitations. Cur-

rently, malware authors are too smart to evade these detection techniques. They

use many evasion techniques to evade the analysis. For static analysis, commonly

used evasion techniques by the malware authors are data obfuscation, control flow

obfuscation, encryption, reflection, dynamically loaded code, repackaging, etc. [4].

For dynamic analysis, anti-analysis, mimicry, data obfuscation, misleading infor-

mation flows and function in-directions, etc. are used as evasion techniques [4].

Besides, limited code coverage lessens the effectiveness of the dynamic analysis.

The hybrid analysis approach integrates both static and dynamic analyses to mit-

igate their weaknesses. Though hybrid analysis is complex enough, it is effective

and feasible according to related research [5, 6, 7, 8, 9].

However, all three approaches deal with a large number of features to classify

malware using machine learning techniques that enhance sophistication. For in-
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stance, 235 different Permissions are used in Android [10]. There are many features

in all types of static and dynamic features. Using this large number of features

would be problematic for malware detection. First, it causes computational com-

plexity. Due to a large number of features, the detection process would be not

efficient enough. Second, this large number of features would over-fit the machine

learning model, which may engender the performances of Android malware detec-

tion. So, identifying significant features might be helpful regarding performance,

effectiveness, and efficiency.

Among various features, Permissions and API Calls are the most used features

in Android malware detection. Most of the works have incorporated those features

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Android Permissions keep Android devices and their user safe. However, An-

droid Permissions can be exploited by malware applications. Most notably, un-

conscious users may give Permissions to malware applications that should not be

given. These problems leave room for the manipulation of malware. Hundreds of

thousands of malware are now performing their malicious operations using Permis-

sions exploitation. Additionally, a growing number of Permissions from Android

platform updates make malware detection harder and more complex.

Android API (Application Programming Interface) is a series of specifications

and guidelines that programs can follow to communicate with each other. Due to

the wide-ranging applicability of API Calls, they are commonly used for charac-

terizing and separating malware from benign applications. However, the Android

operating system uses a large number of API Calls and the number continues to

increase [23]. So, handling this large number of API calls in malware detection for

Android is challenging.

These large numbers of Permissions and API Calls would overfit the classifier

model or complicate the classification method by providing large number of fea-

tures. It would be useful to solve this problem by reducing features in malware
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detection. Several studies [11, 12, 13, 14, 15, 16, 17, 18] also hint that analyz-

ing significant features can reduce complexity. However, those related works lack

comprehensiveness. Those studies only deal with reducing the number of features

but do not maintain or analyze performance. So, the aim of this study is to an-

alyze significant features as well as to maintain performance in Android malware

detection using machine learning techniques.

1.2 Research Questions

Most of the existing research mostly work on static analysis, dynamic analysis, and

hybrid analysis of Android malware detection. A few works deal with significant

or important features for Android malware detection. However, a few works work

essentially on reducing the number of features and suggesting complexity reduction

methods. They do not assess the performance of reduced features with regards

to considering all features. But whether or not they compromise performance is

hard to determine.

As the related works mostly overlooked the importance of significant features

identification and ignored analysis of performance, this work aims at contributing

in this regard. This works aims to answer the following research question.

• RQ: How can we detect Android malware using significant features based on

machine learning techniques?

To detect Android malware effectively and efficiently, analyzing significant

features would be beneficial as suggested by many research [11, 12, 13, 14, 15,

16, 17, 18]. This question can be answered more precisely by investigating

the following sub-questions.

– SQ1: How can we select the significant features for Android malware

detection using machine learning techniques?
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By answering this question, a strategy can be defined for selecting sig-

nificant features from the extracted features automatically. Finding

out the effective combination of significant features is the goal of this

question. Also, the best-suited feature selection algorithm in this re-

gard and the number of features to be selected can be figured out while

answering this question.

– SQ2: How do the significant features perform in Android malware de-

tection?

Identifying significant features would help to build an effective model,

which will lead to better malware detection. The run-time performances

of the significant features would indicate the efficacy and applicability

of it. If significant features do not perform similar to all features, it will

not be effective in Android malware detection. So, the primary concern

here is whether significant features perform proficiently with respect to

all features. With regard to performance analysis, several performance

measures should be considered for robustness. For instance, detection

accuracy, precision, recall, execution time, etc. should be analyzed for

assessing performance.

By answering this question, significant features can be analyzed and deduced

for Android malware detection. It would also enable a new research direction.

1.3 Contribution

This work leads to the study and identification of significant features for the

detection of Android malware. From Section 1.2, it is clear that there are primarily

two objectives that suggest an approach to effectively identify significant features

for Android malware detection and evaluate the performance of significant features

in Android malware detection.
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Addressing the first objective, an approach is proposed to analyze significant

features in Android malware detection. The approach analyzes the best-suited

feature selection algorithm and selects a minimal range of significant features in

malware detection. After feature extraction and data pre-processing, an incre-

mental feature selection (IFS) process is carried out for several feature selection

algorithms, such as Mutual Information Gain, Univariate ROC-AUC scores, Re-

cursive Feature Elimination (RFE) with Gradient Boosting Classifier, and Ran-

dom Forest Classifier, SelectKBest using Chi-square test, SelectFromModel using

Random Forest and Extra Trees classifiers. IFS incrementally select 1 to n num-

ber of features (where, n = total number of features) using those feature selection

techniques and evaluate performances for all the features. Self-descriptive plots of

performance metrics from the IFS assist to determine the best-suited feature selec-

tion algorithm and the minimal range of significant features. The minimal range

of features denotes the range of features from which the performance results do not

improve despite the number of features increased. Afterward, a correlation-based

feature elimination is implemented to further reduce the defined minimal range of

features. A less important feature from each of the highly correlated pairs (with

respect to the target class) is omitted as it does not compromise performance.

To address the second objective, the performance of the significant features

are evaluated on two benchmark data sets separately, such as Drebin and Android

Malware Genome Project (Malgenome). Evaluation of two data sets separately

is due to ensure generality. Using the final minimal range of features and the

nominated feature selection algorithm, performance evaluation is carried out from

three perspectives. Firstly, the detection performance is evaluated using accuracy,

precision, recall, F1-score, and AU-ROC curve of significant features with respect

to all features. Secondly, the run time performance is assessed using execution

time.

Significant features are analyzed in the following three aspects separately:
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1. Significant API Calls Analysis

2. Significant Permissions Analysis

3. Significant Ensemble Features Analysis

The rationale behind this distinct analysis is to analyze the significance of

individual types of features: Permissions and API Calls. This study also seeks to

assess whether or not the ensemble features work better than individual feature

types.

Experimental results show that the proposed approach can effectively identify

significant features by reducing features. For the Drebin dataset, it reduces 73

API Calls to 17-21 API Calls, 114 Permissions to 33-37 Permissions, and 187

ensemble features to 25-30 features. For the Malgenome dataset, it reduces 69

API Calls to 15-21 API Calls, 113 Permissions to 22-26 Permissions, and 184

ensemble features to 12-15 features. Recursive Feature Elimination (RFE) with

the Random Forest classifier turns to be the best-suited feature selection algorithm

for all cases. However, RFE with Gradient Boosting, Feature Importance using

Random Forest, and Extra Trees also perform well.

Moreover, significant features not only decrease features and complexity but

also retains performance as similar to all features. For instance, using only the

top 13 (out of 184) significant ensemble features, the performance metrics are as

follows for the Malgenome data set: accuracy - 97.32%, precision - 96.58%, recall

- 95.78%, f1 score - 0.961, and AUC – 0.994. For the same data set, using all the

184 ensemble features, the performance metrics are as follows: accuracy - 98.32%,

precision - 98.95%, recall - 96.24%, f1 score - 0.975, and AUC – 0.998. Therefore,

significant ensemble features can remarkably reduce features set while keeping

performance consistent. Both significant API Calls and significant Permissions

yield similar results.

Likewise, as far as the execution time is concerned, the significant features
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take fairly less time. For instance, using only the top 13 (out of 184) significant

ensemble features, the execution time is 3.21 seconds while the full features set (184

features) take 16.6 seconds. Finally, the top significant API Calls, Permissions,

and ensemble features are reported.

Lastly, this study suggests that significant ensemble features are most effective

in malware detection than significant Permissions and API Calls. This finding is

also supported by Aswini et al. [11]. Apart from that, significant API Calls are

more effective than significant Permissions in detecting malware detection.

All in all, this study succeeds in analyzing significant features for Android mal-

ware detection while preserving performance in detection. It allows the approach

to be implemented on a broad scale with a viable strategy.

To be specific, this work makes the following contributions:

1. It proposes and assesses an approach for analyzing and identifying significant

features in Android Malware Detection effectively.

2. Its reduced significant features perform notably with respect to the full fea-

tures set in terms of accuracy, precision, recall, F1-score, AU-ROC curve,

and execution time.

3. It provides a list of top significant API Calls, significant Permissions, and

significant ensemble features in Android malware detection.

4. It provokes a discussion about the challenges and opportunities of analyzing

significant features as well as Android malware detection.

1.4 Organization of the Report

In this section, the report organization has been shown to provide this document

with a road-map. In the following, the organization of the chapters in this study

is listed.

8



Chapter 2: The definitions and background information about Android

malware detection have been discussed in this chapter.

Chapter 3: In this chapter, the related works for significant features in

Android malware detection have been presented in a structural way. Also,

existing works on static analysis, dynamic analysis, and hybrid analysis have

been discussed.

Chapter 4: This chapter contains the proposed approach for analyzing sig-

nificant features in Android malware detection.

Chapter 5: The experimental setup, implementation, and evaluation based

on three aspects have been provided in this chapter.

Chapter 6: This is the chapter that summarizes the whole report and high-

lights future work.
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Chapter 2

Background Study

With the growing complexity of the Android system and uncertainty in the en-

vironment, Android malware is also evolving tremendously in terms of nature,

behavior, and evasion techniques [24, 25]. To protect against this phenomenon of

malware, researchers stressed Android malware detection to ensure the security of

Android mobile apps. Researchers mostly rely on machine learning-based malware

detection using static and dynamic features. However, the increasing number of

features and corresponding complexities make the detection process difficult in

terms of model training as well as classification. So, identification of significant

features can reduce the overhead of a large number of features while maintaining

the performance of malware detection.

2.1 Android Malware

Android malware is an application running on the Android OS that implicitly or

explicitly performs malicious activities. It includes virus, worm, trojen, rootkit,

adware, ransomware, spyware, and other malicious application. It can cause

threats from multifarious directions [26], such as:

• disrupt normal functioning
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• leak information

• take access controls

• root exploitation

• manipulate data

• expose private content

• disrupt services

• phishing

• permission misuse

• policy misconfiguration

• incorrect input validation

Moreover, malware is growing exceedingly to keep pace with the immense

growth of Android applications. In each month, on average almost 10 million new

malware is introduced [9]. New malware is found in every 10 seconds [10]. The

most alarming fact is that nowadays noxious malware authors also aware of the

malware detection system and they use many novels and crafty evasion techniques

to avoid detection. Some common evasion techniques [4] by malware author are

given below:

• Data obfuscation

• Control flow obfuscation

• Dynamically loaded code

• Anti-analysis

• VM-aware
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• Reflection

• Encryption

Apart from these common evasion techniques, malware authors try to invoke

new techniques. Researchers also deal with these issues using cutting-edge tech-

nologies and effective malware detection approaches.

2.2 Android Permissions

Android Permissions guards the security of the Android system and its user. When

a user installs an app, it will request certain Permissions to move on. In order to

use particular privileges or access sensitive data like sending SMS, opening cam-

era, recording audio, location, etc., applications need approval from the user and

the system [27]. Sometimes, the Android system automatically grants Permis-

sions to the app when there are not any chances of Permissions exploitation or

in case of very common and basic Permissions. Most of the cases, the Android

system prompts the user to grant the Permissions. According to the user’s neces-

sity and requirement consideration, the user can grant or deny Permissions. By

doing so, the Android system builds a safeguard using automated as well as user

intervention.

A key design point for the Android security architecture is that by default

no application has the authorization to perform any activities that will adversely

affect other applications, the operating system, or the user [27]. For instance, one

application can not get or manipulate data from other applications without any

Permission. Also, one application can not get access to the userś sensitive data or

can not control system features by default. This architecture ensures privacy and

security for users as well as for the Android system.

However, there are many loopholes that might be exploited by the malicious

malware. Most commonly, unaware user can grant Permissions to malicious appli-
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cations which should not be granted. These issues leave space for malware apps to

exploit. Thereby, hundred of thousands of malware apps are still executing their

malicious activities and various types of malware are increasing excessively.

Android Permissions play important role in Android malware analysis because

malware requires certain Permission to perform a series of malicious activities

[28]. Some of the frequently abused Permissions are SEND SMS, READ SMS.

WRITE SMS, USE CREDENTIALS, GET ACCOUNTS, MANAGE ACCOUNTS,

RECORD AUDIO, etc. Developers suggest several recommendations while deal-

ing with Android Permissions [29], such as:

• Using just the Permissions the app requires to work with

• Contemplating Permissions required by libraries

• Being unambiguous and clear-cut about Permission usage and system ac-

cesses

Maintaining these recommendations as well as awareness of users would help

to prevent malware exploitation.

2.3 Android API Calls

Android API (Application Programming Interface) is a series of rules and stan-

dards that can be implemented by applications to communicate with each other

[23]. This communication happens through API Calls. API Calls are the building

block of internal and external communication. API Calls are frequently used to

connect with external resources or platforms. For instance, when a user needs to

check data from an external database or server, his request is being invoked by a

set of API Calls. After the request processing, API Calls are again used to receive

data from the external sources and make it available for the user.

13



Android application developers also take API levels into account, for many

reasons in particular. To implement forward and backward compatibility of An-

droid applications, API levels are used. Nearly all modifications to the API levels

are additive. All application is forward-compatible to later releases; API levels are

not supposed to be expired [30].

Android APIs are now frequently modified and improved with the massive

growth of the Android platform. Every consecutive update of the Android plat-

form brings noteworthy changes to the APIs it offers [31]. In the latest Android

platform version (Android 11), the API level is 30.

API Calls are widely used for analyzing and distinguishing malware from be-

nign applications since API Calls are widely used. According to existing research,

malware applications tend to use a certain set of API Calls while exploiting. API

Calls are more conducive to malware detection than Permissions because many

malware does not need any dangerous Permissions, but several sets of API Calls

need to be used to interact and exploit within the Android system.

2.4 Detection Techniques

Researchers generally analyze Android malware with the following three approaches:

Static Analysis, Dynamic Analysis, and Hybrid Analysis. Each approach has in-

dividual strengths and weaknesses.

2.4.1 Static Analysis

In static analysis, various static features are extracted from source code and meta-

data. If the source code is not available, reverse engineering is applied to reproduce

the source code. According to the static features, a detection model is built using

machine learning techniques to classify Android malware.

Researchers used Androguard, ApkTool, Appknox, DroidMat, etc. tools for
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static analysis. According to the existing research in the static analysis, the most

used static features are Permissions and API Calls. The common static features

[26] used in the literature for static analysis are listed below:

1. Permissions

2. API Calls

3. Intents

4. Instructions/Commands

5. Hardware Usage Analysis

6. Meta-data

7. Signatures

8. Control Flow Graph

9. Suspicious Files

10. Potentially Dangerous Functions and Methods

Static Analysis faces many troubles such as data obfuscation, control flow

obfuscation, encryption, reflection, dynamically loaded code, repackaging, etc. by

the shrewd malware authors [4].

2.4.2 Dynamic Analysis

The dynamic analysis deals with the dynamic features/behaviors of an applica-

tion. To track the dynamic behaviors of an application, the application is to be

run/executed in an emulated environment or on a real device. A detection model

is also built here according to the dynamic features.
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Researchers used Droidbox, Marvin, Cuckoo Sandbox, AppsPlayground, Droid-

Logger, etc. tools for dynamic analysis. According to the existing research in dy-

namic analysis, the most used dynamic features are System Calls. The common

static features [26] used in the literature for dynamic analysis are listed below:

1. System Calls

2. Network Traffic

3. Running Services

4. File Operations

5. Phone Events

6. Network Operations

7. CPU Consumption

8. Memory Consumption

9. Binder

On the other hand, Dynamic Analysis also has some drawbacks. To evade

dynamic analysis, the anti-analysis technique is used frequently by malware au-

thors to detect virtual machines or emulated environments. If the application

detects emulated environments in advance, they will act as a benign application.

By doing so, the dynamic analysis might fail to detect Android malware. Besides,

malware authors use mimicry, data obfuscation, misleading information flows, and

function indirections, etc. to evade dynamic analysis [4]. The biggest weakness of

dynamic analysis is limited code coverage: covering all paths is not feasible when

investigating the dynamic behavior of an application.
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2.4.3 Hybrid Analysis

Hybrid Analysis incorporates both static and dynamic features for detecting An-

droid malware. As it deals with both static and dynamic features, it is compu-

tationally more complex. Andrubis, AndroData, etc. are used by the researchers

for hybrid analysis.

The hybrid analysis integrates both static and dynamic features for effective-

ness. Firstly, it seeks to extract the static and dynamic features of Android ap-

plications. After that, those extracted static and dynamic features are combined

to build a detection model. Finally, according to the static and dynamic features,

a detection model is built using machine learning techniques to classify Android

malware.

By incorporating static and dynamic approaches into a common ground, the

hybrid analysis leads to more complexity in Android malware detection. The

detection process is more likely to take more time and effort. Though the hy-

brid approach might be more effective for Android malware detection than the

static or dynamic approach, accomplishing a viable malware detection technique

is challenging. As the hybrid approach is the combination of static and dynamic

approaches, this approach can overcome the individual weakness as well as can

accumulate the advantages of them. Thereby, the hybrid approach strengthens

the detection process with the cost of time and complexity. Hybrid methods can

also increase robustness, monitor edited apps, increase code coverage, and find

vulnerabilities effectively[4].

2.5 Summary

With the major use of the Android system, malware exploitation is also increas-

ing. So, Android malware detection becomes a widely studied topic. The technical

areas of Android malware detection were examined, and approaches from various
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types were explored from a birdś-eye view. These domains shape the scope and

depth of this subject of study. In this chapter, the basic ideas and concepts of An-

droid malware detection are discussed. Also, several generic detection techniques

and important features of malware detection are discussed. This discussion can

help to understand the existing works in self-adaptive system design.
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Chapter 3

Literature Review

In this chapter, the existing Android malware detection approaches will be dis-

cussed. In the literature, numerous detection approaches have been proposed. In

particular, works concerned with the analysis of important features for malware

detection are explored in depth. Most of the works analyze malware using static,

dynamic, or hybrid analysis approach. Though this study deals with identifying

significant features, the common approaches are also discussed briefly.

Although there are many attempts to detect malware using static and dynamic

analyzes, many of them do not use machine learning techniques. This chapter

focuses primarily on machine learning related malware identification efforts.

From the literature mentioned below, six types of Android malware detection

are evident depending on the form of strategies adopted by these.

1. Significant Ensemble Features Based Approaches

2. Significant API Calls Based Approaches

3. Significant Permissions Based Approaches

4. Static Analysis Based Approaches

5. Dynamic Analysis Based Approaches
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6. Hybrid Analysis Based Approaches

The first three ones are closely related to this study as they deal with significant

or important features for Android malware detection. The first approach which

is the closest to this work deals with API Calls and Permissions features like this

study. To the best of our knowledge, only one prior work is found belongs to

this approach. The later three approaches are most common in Android malware

detection. In the remaining sections, all these approaches are discussed.

3.1 Significant Ensemble Features Based Approaches

Though a handful number of works employed API Calls and Permissions, only

two work deal with identifying important API Calls and Permission at a time.

Optimal Ensemble Features

Aswini et al. [11] compares the significance of ensemble features with regards to

independent features in Android malware detection. In order to identify signifi-

cant features, five feature selection techniques are evaluated, such as Bi–Normal

Separation, Mutual Information, Relevancy score, Kolmogorov dependence, and

Kullback Leibler. AdaBoostM1 with J48, Random Forest, and J48 is used for the

classifier model. Permissions and API Calls are assessed incrementally to identify

optimal features set.

They experimented with 1175 apps including 600 benign and 575 malware

apps where the malware samples are collected from Contagiodump. They con-

sidered Permissions, Permission count, hardware features, software features, and

API Calls as feature categories. Ensemble features are developed by combining

the optimal features from the feature categories.

From the experimental results, 30 Permissions derived from the Bi–Normal

Separation provides the highest accuracy of 92.51% while using the Random For-

est classifier in Permissions analysis. In API Calls analysis, 100 API Calls resulting
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from the Bi–Normal Separation have the best - 91.83% accuracy when using Ran-

dom Forest Classifier. But ensemble features combining Permissions and API Calls

outperforms the independent feature categories. While using 168 ensemble fea-

tures (boolean) with the Bi–Normal Separation, it achieves the highest accuracy

of 93.02% with the Random Forest classifier.

These works suggest that ensemble features comprising the optimal features

can classify Android malware more accurately rather than using Permissions or

API Calls features independently. Also, the Bi –Normal Separation outperforms

other feature selection techniques and Random Forest Classifier outperforms other

classifiers in malware detection. Moreover, increasing the number of features in-

cludes irrelevant features that decrease the accuracy of malware detection.

Fest

Zhao et al. [12] analyze top features using their proposed feature selection al-

gorithm - FrequenSel. They use Permissions, API Calls, Actions, IP and URL

features and identify top features from them. They compare the feature selection

techniques Chi-Square and Information Gain and examine that these two feature

selection algorithms have drawbacks in this regard like distribution bias and long-

tail effect. They analyze top features considering the frequency of features belongs

to malware apps with respect to benign apps.

They evaluate their approach using 3986 malware apps from Drebin, and 3986

benign apps from PlayStore. They classify malware for different features using

Support Vector Machine (SVM), KNN, J48, and Naive Bayes classifiers. The Fre-

quenSel algorithm generates four subsets of features containing 241, 262, 309, 398

features. The features set are then ranked using the Chi-Square and Information

Gain algorithm. The top features are analyzed according to those two feature

selection techniques and they show that their proposed algorithm - FrequenSel

can identify top features for malware detection.

Finally, they evaluate the performance of malware detection using the top 398
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features derived from their approach. Experimental shows that they achieve 97.5%

accuracy with 97.5% recall, 3.2% false-positive rate, and 97.5% true positive rate

while using an SVM classifier.

3.2 Significant API Calls Based Approaches

Some works analyze important or critical API Calls in Android malware detection

though they overlook other features. These works are discussed in this subsection

thoroughly.

DroidAPIMiner

DroidAPIMiner [13], proposed by Aafer et al. analyzes critical API Calls in An-

droid malware detection using frequency analysis. It shows that API Calls based

features outperformed Permission based features. It extracts dangerous APIs,

package level information, and APIs parameters. It refines its feature sets consid-

ering the support of APIs, third-party invoking APIs, and data flow analysis. It

evaluates their approach using 20,000 apps including 3987 malware apps. Malware

apps are collected from McAfee and Android Malware Genome Project. It trains

the model with a KNN classifier and assesses its performance using accuracy, TPR,

and TNR.

It evaluates the performance of the top 10, 40, 80, 120, and 169 API Calls.

Also, it compares the performance with the top 10, 20, 30, 40, 50, 60, 70, 80,

90, 100, 110, and 124 Permissions. Experimental results indicate that API Calls

based features perform better. While using 169 API Calls with the top 20 used

parameters, it gains the highest accuracy of 99% with a TPR of 97.8%. Apart

from the performance, it takes 25 seconds on average to detect Android malware.

Correlation Based Sensitive API Calls

Zhao et al. [14] identifies sensitive API Calls to detect Android malware using
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mutual information-based correlation. The correlation between API Calls and

Android malware is measured using mutual information and it gives a sensitive

score between 0 to 1. They demonstrate that taking the top 20 sensitive API Calls

is the most convenient as the performance does not increase if more API Calls are

taken into consideration.

At first, they extract the API Calls and generates a 20-dimensional eigenvector.

Afterward, it employs an ensemble learning model using KNN and decision tree

algorithm for model training and defines a voting strategy to classify malware.

In this work, 528 malware samples and 516 benign samples are used for training

and 100 apps are taken for testing purposes. Malware samples are taken from

virusShare.com. According to experimental results, their approach achieves 92%

accuracy with a precision of 93% and TPR of 89% while gives a high FPR.

Grouping of API Calls

Alazab et al. [15] proposes grouping strategies for selecting important API Calls

in Android malware detection. They consider the occurrences of API Calls in

benign and malware apps. Using set-theoretical intersection and the occurrences

of API Calls, their strategy divides the API Calls into three distinct groups as

follows:

1. Ambiguous group: The intersection of API Calls which are commonly

utilized by benign and malware apps.

2. Risky group: The intersection of API Calls which are used by malware

apps more frequently than benign apps.

3. Disruptive group: The intersection of API Calls which are frequently used

by malware apps but not by benign apps.

They aim to classify malware using the API Calls from the risky group and

disruptive group. They also analyze the feature importance of API Calls using the
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Mutual Information Gain algorithm to justify their grouping. According to the

feature importance, the top 12 important features in malware detection belongs

to the risky group.

In their work, it uses 13,719 malware samples collected from Androzoo, Con-

tagio, MalShare, VirusShare, and VirusTotal. Also, it uses 14,172 benign samples

collected from PlayStore. They employ Random Forest, J48, Random Tree, KNN,

Naive Bayes classifiers for evaluation. Using 1326 API Calls from the risky group

and the disruptive group, their approach achieves an F-measure of 94.3% with

Random Forest classifier.

3.3 Significant Permissions Based Approaches

Apart from the important API calls, there are other works in Android malware

detection that evaluate important Permissions even if they ignore other features

like API Calls. These works are discussed in this subsection thoroughly.

SigPID

Sun et al.[16] proposes a 3-level data pruning approach to identify significant Per-

missions in Android malware detection. They successfully reduce 135 Permission

features to 22 features while maintaining performance. Their 3-level data pruning

methods are described as follows:

1. Permission Ranking with Negative Rate (PRNR): It gives a conclu-

sive ranking of Permissions considering the usage of Permission by benign

and malware apps. For all the Permissions, their support corresponds to

the benign, and the malware dataset is calculated. Afterward, the PRNR of

the Permissions is calculated using the supports. PRNR ranges from -1 to 1.

PRNR of -1 indicates that the Permission is only used by the benign dataset,

PRNR of 1 indicates the Permission is only used by the malware dataset,
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and PRNR of 0 indicates that the Permission impacts very little in Android

malware detection. After applying PRNR, they reduce 135 Permissions to

95 Permissions.

2. Support Based Permission Ranking (SPR): Here, it uses the support

of each Permission as exclusion criteria. If the support of the Permission is

low, it is excluded from the significant Permissions for little impact. After

applying SPR, they reduce 95 to 25 Permissions.

3. Permission Mining with Association Rules (PMAR): Finally, they

exclude one of the permissions which appear together in an app. To identify

it, it uses PMAR and reduces 25 to 22 Permissions.

They use 5494 benign apps and 1661 malware apps for evaluation. They eval-

uated the five best classifiers from 67 classifiers. And, Functional Tree is the op-

timal classifier for analyzing malware using significant Permissions. Experimental

results show that using the significant 22 Permissions and the optimal machine

learning algorithm, they achieve performances, such that accuracy - 95.63%, pre-

cision - 97.54%, recall - 93.62%, FPR - 2.36%, F-measure - 95.54%. Moreover,

they demonstrate that significant Permissions in particular takes less training and

testing time.

Their reduced number of Permission features have a higher recall value, close

enough accuracy value with the full features set. But their precision was lower

and false positive rate (FPR) was higher notably with respect to all Permission

features.

ANFIS-FCM using Significant Permissions

Altaher et al.[17] proposes an approach based on an adaptive neuro-fuzzy infer-

ence system (ANFIS) with fuzzy c-means clustering using significant application

permissions. In Permissions analysis, they use the Mutual Information Gain al-
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gorithm for feature selection. The top 24 ranked features according to feature

importance are taken for classification.

They use the Android Malgenome Project dataset to collect malware samples

and uses PlayStore to collect benign samples. Their classification accuracy is 91%,

with a False Positive Rate (FPR) of 0.5% and a False Negative Rate (FNR) of

and 0.4%.

Risky Permissions using Feature Ranking and Subset Selection:

Wang et al.[18] explores the Permission-induced risk in Android applications. In

the first step, they evaluate individual permissions and collective permissions and

implemented three measures of scoring on the permission features. To identify

the risky Permissions, the following three feature ranking methods are used: mu-

tual information, correlation coefficient, and T-test. Afterward, they discover

risky permission subsets using Sequential Forward Selection (SFS) and Principal

Component Analysis (PCA). Moreover, they assess the risky Permissions using

Decision Tree, Random Forest, and Support Vector Machine classifiers.

Using the ranking methods they report the top 40 risky Permissions ranked

by the three methods separately. In order to obtain the risky Permission subsets,

three ways are suggested as follows:

1. Selecting top-k Permissions according to the risky Permissions ranking

2. Applying Sequential Forward Selection (SFS) to select top k permission sets

3. Applying Principal Component Analysis (PCA) to select top k principal

components

They assess all three ways with the classifiers. They use 3417 malware apps

and 310,926 benign apps in their study. The experimental result shows that using

the 40 top risky Permissions, all the methods including Decision Tree and Random
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Forest gain 92.79% detection with high TPR and low FPR. They achieve 94.62%

TPR while the FPR is only 0.6% while using Random Forest.

3.4 Static Analysis Based Approaches

Static analysis based approaches are the most common Android malware detection

technique due to their simplicity and comparatively high detection rate. While

several works deal with static analysis based approaches, this section contains only

works that deal with Permissions or API Calls as this study focuses on identifying

significant features from Permissions and API Calls.

Arp et al. [19] proposes a lightweight static feature-based malware detection

method called Drebin. In the Drebin, they analyze 8 static features, including

Permissions and API Calls, of Android and converted them into vector space.

Using 5,560 malware samples and 123,453 benign samples, they evaluate their

approach. They achieve a 94% detection rate with the limited false positive rate

(FPR) and outperforms existing anti-virus scanners.

Karab et al. [20] introduces MalDozer, a system that uses API Call sequences

and deep learning techniques to classify Android malware. According to multiple

evaluations using different datasets, they achieve an F1-score of 96%-99% with a

false positive rate (FPR) of 0.06%-2%.

Yerima et al. [22] proposes a parallel machine learning-based malware classi-

fication approach using API Calls, Permissions, and Commands. They combine

rule-based classifiers, function-based classifiers, tree-based classifiers, and proba-

bilistic classifiers to detect malware. They assess their approach using 2925 mal-

ware apps and 3938 benign apps. Using 179 features, they gain accuracy of 97.3%,

FPR of 3%, and FNR of 2.8% which outperform individual classifiers. This work

also surmounts their prior work [21] based on the Bayesian classifier.

Mariconti et al. [32] suggest a behavioral model based on Markov Chain using
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API Calls call graph. They evaluate their approach using 35,493 malware samples

from Drebin and VirusShare and 8,447 benign samples. They achieve F-measure

as close to 99% and outperforms one of state-of-the-artwork - DroidAPIMiner [13].

Peiravian et al. [33] combines Permissions and API Calls and shows that the

combination performs better than the individual feature. They use 1200 malware

apps from Android Malware Genome Project and 1200 benign apps from Play-

Store. Using API Calls modeled with SVM (Support Vector Machine) classifier,

they gain accuracy of 95.75%, a precision of 91.7%, a recall of 94.8%, and an AUC

of 0.957.

Su et al. [34] employ deep learning for feature learning and Android malware

detection. They use Permissions, API Calls, Actions, and App Components for

their deep learning model - Deep Belief Network. They evaluate 3986 benign apps

from PlayStore and 3986 malware apps from Drebin, Android Malware Genome

Project, and Contagio Dump. They outperform several existing works with a

99.4% detection rate using the SVM (Support Vector Machine) classifier. Also, it

can analyze an app in 6 seconds on average which increases its feasibility.

Raphael et al. [35] uses X-ANOVA, a modified version of conventional ANOVA,

to rank features for malware detection. They deal with Permissions, Opcodes,

and Methods and employs three classifiers, such as Random Forest, J48, and

AdaBoostM1. They achieve 90.63% accuracy using the ranked features.

Manilyzer, introduced by Feldman et al. [36] uses Permissions and other mani-

fest file features for malware detection. They use 307 malware apps from Contagio

and 310 benign apps from PlayStore for evaluation. Their approach gains 90%

accuracy with the J48 classifier. But their false positive rate (FPR) is 10.1% and

the false-negative rate (FNR) is 10% which restricts its applicability.

Dhanya et al. [37] used Permissions and API Calls for Android malware de-

tection. Separability assessment Criteria is used for feature selection in this re-

search. Using the 77 selected features and four different machine learning algo-
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rithms (Naive Bayes, SVM, J48 & Random Forest), they evaluated their work.

Their performance regarding F-measure, precision, and recall is dubitable as they

used Drebin, an outdated and limited dataset. Besides they did not consider any

other features except Permissions and API Calls.

3.5 Dynamic Analysis Based Approaches

Dynamic analysis based approaches are less common due to their high complexity

and time-consuming nature. They take notably more time than static analysis as

they analyze run time behavior of Android application rather than using static

features. Moreover, dynamic analysis is the least related type of malware detection

technique with respect to this study as no dynamic features are employed here.

So, a brief overview of some dynamic analysis based approaches is described in

this section.

Amos et al. [38] propose a framework - STREAM for dynamic analysis for

Android malware detection. It collects dynamic information on memory, network,

battery, binder, and permissions. It uses 1330 malware apps from Android Mal-

ware Genome Project, VirusTotal, and 408 benign apps from PlayStore. Using

combined features and different classifiers (Naive Bayes, Random Forest, Bayes

net, Multilayer perceptron, Logistic, and J48), it gains 68.75% to 81.25% detec-

tion accuracy.

Another work, DroidDolphin by Wu et al. [39] uses 13 types of run time

activities like network data, file operations, information leaks, SMS, API Calls, etc.

for malware classification. They analyze 32,000 benign apps and 32,000 malware

apps using Support Vector Machine (SVM). They achieve 86.1% accuracy with an

F1-score of 0.857.

Dash et al. [40] present DroidScribe, where it employs dynamic analysis using

run-time behaviors like Binder, System Calls, File Operations, Network Access,
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etc. They evaluate their work using the Drebin dataset of 5560 malware samples.

With the Support Vector Machine (SVM) classifier, they improve detection accu-

racy from 72% to 84%. Finally, they propose a hybrid prediction technique that

improves the detection accuracy from 84% to 94%.

Afonso et al. [41] employ API Calls frequency and System Calls frequency

for Android malware classification. They use 4552 malware samples from the

Android Malware Genome Project and VirusShare. Also, 3831 benign apps from

the AndroidPTI market are used. They classify malware using various classifiers

like Random Forest, J48, Simple Logistic, Naive Bayes, etc and Random Forest

outperforms the rest of the classifier. They achieve a 96.82% detection rate with

high precision, recall, and F-measure. Their false-negative rate is 3.94% and the

false positive rate is 2.43%.

3.6 Hybrid Analysis Based Approaches

Hybrid analysis based approaches gain researchersáttention due to their high de-

tection rate and all-inclusiveness. Recently, there are many works that deal with

hybrid analysis and explore opportunities in this field. Most of the hybrid works

mainly focus on static features while combining static and dynamic features. Only

works dealing with Permissions or API Calls as static features are included in this

section. A brief overview of hybrid analysis based approaches is discussed here.

One of the state-of-the-artwork in hybrid analysis, Marvin [5] employed a lot of

static and dynamic features to detect Android malware. It extracted Permissions,

Intents, Suspicious Files, API Calls, Developers Certificate, etc. as static features

and File Operations, Network Operations, Phone Events, Dynamically Loaded

Code, etc. as dynamic features. It used SVM and Linear Classifiers (Regularized

Logistic Regression) to build a detection model where Linear Classifiers can detect

more accurately but SVM is faster comparatively. For labeled test data, Marvins
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performance is sound enough as its accuracy to detect malware is 98.24% with less

than 0.04% false-positive rate. But for previously unseen malware, its accuracy

is close to 90%. Besides, to avoid the obsolescence of its classification model in

the future, it presented a retraining strategy. Though Marvin considers a lot of

features, it overlooked system-level events such as System Calls: an integral part

of the behavioral aspects (dynamic features)

Samadroid [6] presented an on-device malware detection architecture which

ensures the resource efficiency by reducing memory overhead of local devices. It

used a subset of Drebin’s [11] features (6 out of 8) as static features and 10

predefined System Calls as dynamic features. Its accuracy is almost 98% with

a false positive rate of 0.1%. Though it incorporated System Call into its feature

space and outperform Drebin [11], it used the old dataset. Thereby it might fail

to fight against recent malware as malware behavior changes frequently over time.

It also overlooked any additional dynamic features.

BRIDEMAID [42] proposes a framework using multi-level and multi-feature

analysis. It can detect polymorphic and composition malware to avoid zero-day

attacks. Its accuracy is relatively high regarding existing works. However, it does

not use any benchmark dataset. Also, it reports only accuracy and FPR, other

metrics should be reported to properly evaluate the framework.

OmniDroid [43] fuses several prior tools to extract many static and dynamic

features and employs ensemble-based classifiers. Though they considered only a

large feature-set, their performance is relatively lower than existing works.

MADAM [7] concurrently assesses static and dynamic features at four levels

in detecting mischievous activity. Though it gains accuracy of 96.9%, it has high

memory overhead and limited scope (only run in the rooted device, works on

post-installed apps).

Hadm [44] incorporated Deep Neural Network for feature extraction from a

set of static and dynamic features. It exhibited that combining advanced features
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derived by deep learning with the original static and dynamic features provides

consequential returns. It achieved 94.7% accuracy with a false positive rate of

1.8% while with the original features the best accuracy is 93.5%. An improvement

of 1.2% with the cost of complexity.

Droid-detector [45] extracted more than 200 static and dynamic features with

the deep neural network. It achieves 96.5% accuracy in detection. However, it

uses a limited dataset and limited types of features.

Mobile-SandBox [46] used Permissions, Services, Receivers, Intents, Potentially

dangerous functions, and methods as static features and investigated Native Code

(Native API Calls) and Network Traffic as dynamic features to classify malware.

It lacks in performance as it did not provide any solid performance metrics.

Kapratwar et al. [47] used Permissions and System Calls for hybrid analysis.

Its performance (AUC) is significantly better for static features in comparison with

dynamic features. But it used a small (200 apps) and old dataset and overlooked

other static and dynamic features.

Liu et al. [8] proposed a hybrid malware detecting scheme for Android where

Permissions and API Calls are used as static features and System Calls used as

dynamic features. Their scheme’s detection accuracy is from 93.33according to

experimental results. Though they considered only a small feature-set and their

dataset are also limited. Table II depicts the literature overview of hybrid analysis

using machine learning.

Patel et al. [9] use a genetic algorithm for rule-based malware classification

using hybrid features. By assessing more than 231 features, it achieves 96.4%

accuracy in malware detection. But it uses a limited dataset and its execution

time and resource consumption are high.

Yusof et al. [48] use Permissions, API Calls, and System Calls while achieving

sound performance with respect to the accuracy, precision, and recall. However,

its model is trained with the malware samples only which would lead to a biased
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model. Also, FPR is high enough in their work.

3.7 Summary

According to the literature review, the most common malware app data sets are

Drebin, Contagio, and the Android Malware Genome Project. Besides, most

researchers use the Google Play Store and local app stores to collect benign appli-

cations. VirusTotal, VirusShare, etc. sources are also used for malware samples.

Random Forest and the Support Vector Machine (SVM) are the most used

machine learning techniques in Android malware detection. Apart from that,

Naive Bayes, KNN, J48, Logistic Regression, etc. are also common in the existing

research. Researchers use many evaluation metrics in malware detection, such as

accuracy, true positive rate (TPR), false-positive rate (FPR), precision, recall, and

f1-score.

Permissions and API Calls are the most used static features and System Calls

are the most used dynamic features. Existing works suggest that these two fea-

tures play a vital role and have a notable impact on detecting Android malware

accurately. Therefore, researchers give the API Calls and Permissions features

the most priority in all types of Android malware detection approaches except

dynamic analysis based approaches.

From the discussion of the existing works in Android malware detection tech-

niques, it is evident that the increasing number of Permissions and API Calls

hardens the classification by imposing complexity. Only a handful of works deal

with this issue of large features space and try to reduce it by identifying impor-

tant features while maintaining detection performance. However, it is also visible

that exploring important features is still challenging. Besides, combining multiple

types of features and finding out important features from them also seems to be

challenging. However, up-to-date machine learning techniques, feature selection
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algorithms hold promises to pave the way towards mitigating these issues.

Identifying significant Permissions or API Calls, especially significant ensemble

features can help to reduce complexity without compromising detection perfor-

mances. So, researches that focus on sorting out significant features can solve the

aforementioned problems.
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Chapter 4

Significant Features Analysis

A lot of work is being conducted on static analysis [19, 20, 21, 22, 33, 34, 35, 36, 37],

dynamic analysis [38, 39, 40, 41] and hybrid analysis [5, 6, 42, 7, 44, 45, 47, 8,

9, 48] for Android malware detection. Existing research indicates that typical

Android malware detection approaches deal with many features at a time while

analyzing malware.However, several works [11, 12, 13, 14, 15, 16, 17, 18] focus

on analyzing significant features. Those works suggest that identifying significant

features can reduce complexity while maintaining performance. Therefore, this

study aims to analyze significant features in Android malware detection using

machine learning techniques. Two of the most frequently used features in Android

malware detection, Permissions, and API Calls, are used in this study.

This study analyzes significant features from three aspects, such as:

1. Significant Permissions Analysis

2. Significant API Calls Analysis

3. Significant Ensemble Features Analysis

These three analyzes are performed separately for two reasons. Firstly, the in-

dividual significance of Permissions and API Calls can be assessed if those three

analyzes are conducted separately. Also, individual significance can be compared
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Figure 4.1: Overview of Significant Features Analysis

with similar research. There are several distinct works which deal with significant

Permissions [16, 17, 18], significant API Calls [13, 14, 15], and significant ensemble

features [11, 12] independently. Secondly, the sources and extraction processes of

Permissions and API Calls are different. Permissions can be extracted more easily

than API Calls from AndroidManifest.xml file. So, in terms of the applicability

of malware detection, apart from detection performance, it should also be consid-

ered that which features are easily extracted and analyzed. Thereby, the overall

approach is assessed in three distinct aspects.

The overall approach is depicted in Figure (4.1). First, the features from

Android application files are extracted and converted into features vector. Per-

missions and API Calls are extracted separately. Then, basic data preprocessing is

performed on the extracted features. Afterward, the cornerstone of this approach,
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incremental feature selection (IFS) is carried out. Several feature selection tech-

niques are assessed incrementally to avoid any predefined biases. Typical feature

selection approaches use predefined numbers of features or predefined values, such

as threshold, algorithm parameters, etc. to filter out features. All features are

evaluated progressively to prevent this bias and to define the minimum number

of features. It helps to evaluate performance for a number of features from 1 to

n and to choose the minimum number of features that generate performance as

close to the complete collection of features. From the IFS, a minimal range of

features for different feature selection techniques are identified using performance

plots, like selecting top k features. Next, the minimal number of features and

best-suited feature selection techniques for malware detection are identified by

analyzing the performance. After identifying the minimal number of features, a

correlation-based feature elimination strategy is performed for further reduction of

features set. Finally, the reduced set of features are evaluated on the three above

mentioned aspects. That evaluation is performed based on accuracy, precision,

recall, F1-score, AU-ROC curve, and execution time.

4.1 Feature Extraction

In order to detect Android malware, static features like Permissions and API Calls

are the most frequently used [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 32, 33, 34, 35,

36, 37] features. Even in hybrid analysis of Android, these two features are quite

common [5, 6, 42, 7, 44, 45, 47, 8, 9, 48]. Permissions and API Calls are extracted

from the Android application files separately. In doing so, the application file is to

be uncompressed first using any reverse engineering technique. There are several

reverse engineering tools available for doing that, such as APKTool, APKInspec-

tor, Androguard, etc. After reverse engineering, the AndroidManifest.xml file and

the smali files are needed for extracting Permissions and API Calls respectively.
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Figure 4.2: Feature Extraction of Android App

AndroPyTool [49] is used in this study for feature extraction. It generates

JSON files containing Permissions and API Calls while performing static analysis

of the Android app. Afterward, the JSON files are extracted for mining Permis-

sions and API Calls. Finally, the extracted features are converted into feature

vectors through parsing. The feature vectors are used for data analysis and clas-

sifying Android malware. Overall feature extraction process is depicted in Figure

(4.2)
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4.1.1 Permissions Extraction

Android provides a scheme of install-time permissions system for managing access

to related APIs for privacy and security. For example, android.permission.internet

is the permission to open the socket for internet connection required for an appli-

cation. The permissions are requested upon installing an app and outlined in the

AndroidManifest.xml file explicitly. The manifest file is being parsed into .xml

format using the Androguard tool to extract the Permissions of an app.

4.1.2 API Calls Extraction

Android apps are developed in Java or Kotlin and compiled into optimized byte-

code for the Dalvik virtual machine (DVM). The classes.dex files contain the

bytecodes. API Calls can be obtained by disassembling the classes.dex 1 files into

smali 2 files. Here, baksmali is used as the disassembler.

4.2 Data Preprocessing

The dataset is preprocessed using traditional data preprocessing techniques. Miss-

ing value treatment and label encoding is incorporated. In missing value treat-

ment, the missing values are replaced by the mode of the distribution as all the

features are binary. In label encoding, each categorical value is being converted

to a number. For example, if a feature has two categorical values - yes and no,

each value is being converted to 1 and 0; 1 for yes and 0 for no. The data type of

all features in the features space is converted into a singular format for coherence.

For, incremental feature selection and classification, the dataset is split into two

sets in a ratio of 0.5. So, half of the data is used for feature selection, and half

1A Dalvik Executable file that all Android applications must have. This file contains the
Java libraries that the application uses.

2Developer file written in Smali, the assembly language used by the Android Dalvik Virtual
Machine; usually created by decompiling
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of the data is used for malware classification. Also, 10-fold cross validation is

employed on the classification data.

4.3 Incremental Feature Selection (IFS)

In identifying the significant features for Android malware detection, two aspects

are considered. The incremental feature selection approach plays a crucial role in

both aspects to conclude.

Firstly, how many numbers of features should be selected as signifi-

cant features? As the goal is to identify the significant features, the first concern

is about the number of features to be selected. It is possible to adjust the number

of features using some predefined threshold or parameters for the feature selection

algorithms. For example, the ROC-AUC score or the Mutual Information Gain

can be used to limit the number of features beforehand.

In this study, it is avoided to set any predefined parameters or threshold for

selecting the number of features in advance. Rather, it is intended to determine

the minimal number of features by analyzing performance metrics for different

numbers of features. In doing so, several feature selection techniques are analyzed

incrementally. To measure the relative importance of the features, a tree-based

estimator – Random Forest Classifier is used. According the feature importance,

from one to the highest number of features are assessed separately based on the

performance metrics (accuracy, precision, recall, f-1 score, and AUC). The per-

formance metrics are visualized in plots to understand the increasing pattern of

performances according to the number of features.

Secondly, which feature selection technique is better suited to reduc-

ing the number of features while preserving performances in Android

malware detection? Again, several feature selection techniques are analyzed

in an incremental fashion: 1 to n features are evaluated to find out a suitable
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technique, rather than imposing a predetermined feature selection technique. The

feature selection techniques used in this study are briefly discussed in the following

subsections.

4.3.1 IFS using Mutual Information Gain (Entropy-Based)

Mutual Information is a non-negative value between two random variables, which

measures dependency between variables. It measures the quantity of information

gained by analyzing the other random variable involving one random variable. It is

equal to zero if there is two independent random variables, and higher values mean

higher dependence. The function is based on non-parametric methods based on

entropy estimation of the distances from k-nearest neighbors [50, 51]. The mutual

information of two jointly discrete random variables X and Y is calculated as a

double sum using Equation (4.1).

I (X ; Y ) =
∑∑

p(X, Y )
(x,y) log

(
p(X,Y )(x,y)

p(X)(x)p(Y )(y)

)
(4.1)

where,

p(X,Y) is the joint probability mass function of X and Y,

p(X) and p(Y) are the marginal probability mass functions of X and Y respec-

tively.

4.3.2 IFS using Univariate ROC-AUC Score

A ROC curve (receiver operating characteristic curve) is a graph representing a

classification model output at all classification thresholds. This curve maps two

parameters: True Positive Rate and False Positive Rate. AU-ROC curve stands

for Area under the ROC Curve, meaning that AUC measures the whole two-

dimensional space under the ROC Curve. The region under the AU-ROC curve is
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proportional to the probability that a classifier ranks a randomly selected positive

instance higher than a randomly selected negative one by using normalized units

[52]. Univariate AU-ROC curve involves the analysis of a single variable. An

AU-ROC curve equal to 0.5 corresponds to a type of random classification. For a

model to be acceptable AU-ROC curve should be be much greater than 0.5.

4.3.3 IFS using Recursive Feature Elimination (RFE)

The goal of recursive feature elimination (RFE) is to pick features by recursively

considering smaller and smaller sets of features, given an external estimator that

assigns weights to features. First, the estimator is trained on the initial collection

of features and the importance of each feature is obtained. The least significant

features are then pruned from the present range of features. The process is re-

peated recursively on the pruned collection before finally achieving the required

number of features to be chosen [53]. In this work, two classifiers are used as the

estimators of the RFE.

RFE with Gradient Boosting Classifier

As the base estimator of the RFE, Gradient Boosting Classifier is employed. Gra-

dient Boosting Classifier builds an additive model in forward-stage-wise fashion;

enables arbitrary differentiable loss functions to be optimized. Regression trees

are fit on the negative gradient of the function of binomial or multinomial loss of

deviance in each point [54].

RFE with Random Forest Classifier

Random Forest classifier is also used as the base estimator of the RFE. It is a meta-

estimator that fits multiple decision tree classifiers on various dataset sub-samples

and uses an average to improve prediction [55].
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4.3.4 IFS using SelectKBest with chi2

SelectKBest scores the features according to the k-highest scores. It takes a score

function as a parameter, which would be specific to a pair. The score function

retains the features of the first k-highest scores [56]. In this study, the Chi2

scoring function is employed. This scoring function computes the chi-squared

stats between each non-negative feature and class scores accordingly. It tests for

which of the distribution of the test statistic approaches the χ2 (Chi-Squared)

distribution asymptotically [57].

4.3.5 IFS using SelectFromModel(Tree-Based)

SelectFromModel is a meta-transformer that can be used along with any tree-

based estimator. It calculates the feature importance of each feature according to

fitting the estimator into the data. Based on the feature importance it selects the

top N features, where N is predefined [58]. Tree-based estimators are used here as

it can classify the significant features by selecting the classification features based

on how well they boost the node’s purity [59]. The tree-based model to split at

each node is made according to the metric called purity . A node is 100% impure

when a node is split evenly 50/50 and 100% pure when all of its data belongs

to a single class. In this case, every possible value of N is evaluated. Also, two

tree-based estimators are incorporated here: Random Forest Classifier and Extra

Trees Classifier.

4.4 Determining Feature Selection Technique us-

ing the Minimal Range of Features

After carrying out the incremental feature selection using different feature selection

techniques, analysis of performance metrics is evaluated to identify the minimal
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range of features. The minimal range of features implies a range of features from

which segment the performances of Android malware detection are not increased

notably with respect to the increasing number of features. In other words, before

the minimal range, the performances are increased. But, after the minimal range,

the performances are quite unchanged with the increase of features. To conclude

the analysis, a self-explanatory plot is generated using the performance metrics

(accuracy, precision, recall, F1-score, and AU-ROC curve) with respect to the

increasing number of features. According to the plots for different techniques, the

minimal range of features are deduced.

An example of analyzing the minimal range of features is depicted in Figure

(4.3). The minimal range of features is marked with a black rectangle in the figure.

According to the figure, as the number of features increases, the performances

are also increasing notably. However, from the minimal range of features, the

performances are getting stable with respect to the increasing number of features.

After the minimal range, the lines remain almost horizontal with respect to the

number of features. This indicates that in the minimal range, the performances

of malware detection reach as close to the final performances. So, in order to

reduce complexity while keeping performance as close to the final performance, the

minimal number of features is selected to analyze significant features in Android

malware detection.

The minimal ranges for different feature selection techniques are conducive to

choose the suitable feature selection technique. The feature selection technique

which provides the lowest minimal range is carefully chosen for identifying signif-

icant features in Android Malware Detection. As the minimal range of features

offers almost similar performances to the full features set, taking the lowest min-

imal range of features from several feature selection techniques is advantageous

regarding the reduction of complexity.
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Figure 4.3: Identifying Minimal Range of Features

4.5 Correlation-based Feature Elimination

In the final step, a feature elimination strategy is performed for further reduction

of features without affecting the performances considerably. This step is applied

to the important features obtained from the selected feature selection technique.

Here, a correlation-based feature elimination strategy is applied. The strategic

intuition is that if two features are highly correlated with regards to malware

detection, removing one of them might not affect the overall performances.

A pair-wise Pearson correlation coefficient is calculated for all pairs of impor-

tant features [60]. It is a measure of the linear correlation between two variables

X and Y. It is calculated using the following Equation (4.2).

ρxy =
Cov(x, y)

σx, σy

(4.2)

where,

ρxy = Pearson correlation coefficient
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Cov (x,y) = covariance of variable x and y

σx = standard deviation of x

σy = standard deviation of y

Afterward, all the pairs with a Pearson correlation coefficient less than 0.85

are selected for the feature elimination process. As the two features in each pair

are highly correlated, so removing one of them would not affect the classification

performances.

The next concern is which feature to eliminate from a pair and how to choose

that feature. The elimination strategy here is to remove the less important feature

from each pair using their relative feature importance. According to the relative

feature importance, the more important feature in each pair is intact, and the less

important feature is eliminated.

4.6 Evaluation Strategy

Finally, the reduced set of features are evaluated on the accuracy, precision, re-

call, F1-score, AU-ROC curve, and execution time. The evaluation is carried out

separately on 3 aspects as follows:

1. Significant API Calls Analysis

2. Significant Permissions Analysis

3. Significant Ensemble Features Analysis

Five performance metrics are considered for the evaluation – accuracy, precision,

recall, F1-score, AU-ROC curve. These five performance metrics are selected

based on their relevance in this analysis, and taking into account the evaluation’s

comprehensiveness. Existing studies often use these performance metrics but not
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all of the five metrics are included in a single analysis. A brief description of the

performance metrics and their relevance is discussed as follows.

• Accuracy: Accuracy is the most intuitive performance metric. Accuracy

denotes the ratio of correctly classified samples with respect to all samples

[61]. Accuracy is calculated using the following Equation (4.3).

Accuracy =
TruePositive+ TrueNegative

Total Population
(4.3)

Accuracy is the most frequently used performance metric in Android mal-

ware detection. It signifies the ratio of correctly classified malware to all

samples.

• Precision: Precision denotes the ratio of correctly classified samples with

respect to all classified samples [61]. Precision is calculated using the follow-

ing Equation (4.4).

Precision =
TruePositive

TruePositive+ False Positive
=

TruePositive

Total Classified Positive

(4.4)

Precision is useful where False Positive costs are high. A false positive in

malware detection implies the classification of a benign app as malware.

Therefore, if the precision is lower, users will not use many benign apps due

to the classification of many benign apps as malware.

• Recall: Recall denotes the ratio of correctly classified samples with respect

to all actual samples [61]. Recall is calculated using the following Equation

(4.5).

Recall =
TruePositive

TruePositive+ FalseNegative
=

TruePositive

Total Actual Positive
(4.5)

47



Recall is useful where False Negative costs are high. A false negative in

malware detection implies the classification of a malware app as benign.

Therefore, if the recall is lower, users will suffer the most by running malware

as a benign app.

• F1-score: F1 score is a function of precision and recall which balances

between them. Hence, it takes both false positives and false negatives into

account [61]. F1 score is calculated using the following Equation (4.6).

F1 − score = 2 ∗ Precision ∗Recall
Precision+Recall

(4.6)

F1 score is useful in malware detection because both False Positive and False

Negative costs are high here. Because of misclassification users neither want

to use malicious app nor want to skip benign apps.

• AU-ROC curve: AU-ROC (Area under Receiver operating characteristic)

curve is a probability curve and it denotes the degree or measure of separa-

bility. It shows how well a model can differentiate between groups [62].

In malware detection, the higher the AUC, the better the model is at distin-

guishing between benign and malware apps. It is a good measure to justify

the model’s applicability in malware detection.

Here, the performance metrics play a vital role in determining the minimal

range of features for different feature selection techniques. Besides, the best-

suited feature selection technique is chosen using the plots derived from these

performance metrics. The selected feature selection technique is assessed eventu-

ally within the minimal range of features for the evaluation.

For, incremental feature selection and classification, the dataset is split into

two sets in a ratio of 0.5. So, half of the data is used for feature selection, and

half of the data is used for malware classification. With the feature selection
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data, 10-fold cross-validation is employed for incremental feature selection. In the

final assessment (classifying malware), the Random Forest classifier is trained and

evaluated with 10-fold cross-validation with the classification data.

Existing works that do not use Permissions or API Calls, for example, are

excluded from this study. Similarly, the most common performance metrics, such

as accuracy is used in the comparison.

Finally, significant features are identified using the relative feature importance

and reported accordingly. All these evaluation strategies are performed on the

above mentioned three aspects separately.

4.7 Summary

This chapter includes a detailed description of the overall approach. Firstly, fea-

ture extraction and data-preprocessing are performed using AndroPyTool tool.

Then, incremental feature selection (IFS) techniques are carried out for several

feature selection algorithms and their corresponding performance is plotted for

analysis. According to that, the best-suited technique and corresponding mini-

mal number of significant features are identified. Also, a correlation-based feature

elimination step is performed to reduce the number of features without hamper-

ing performance. Lastly, an evaluation strategy is defined for analyzing significant

features in Android malware detection.
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Chapter 5

Evaluation

This chapter contains the dataset description, implementation details, experimen-

tal setup, and evaluation of significant features analysis. The discussion of the

results to explain some important insights are also presented.

The feature extraction, data preprocessing, incremental feature selection (IFS),

performance plotting, correlation-based feature elimination steps are implemented

in Python using Jupyter-Notebook and PyCharm platforms.

In the evaluation of this study, two benchmark datasets are used. The ex-

perimental results are analyzed based on five performance metrics - accuracy,

precision, recall, F1-score, and AU-ROC curve. These metrics are widely used

in evaluating performance of Android malware detection. Besides, the execution

time of detection and comparison with existing works are assessed.

5.1 Implementation

In this section, the tools and technologies for implementing the proposed technique

are discussed. The class diagram of the implementation is also provided to get an

overall view of the technique.
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5.1.1 Tools and Technologies

The tools and technologies to implement the overall technique are described in

this subsection. AndroPyTool [63] is used for feature extraction. Python is used

for creating feature vectors from the extracted features (JSON format). Finally,

incremental feature selection, identifying minimal ranges, plotting performances,

correlation-based feature elimination, model building, and performance evaluation

are implemented using Python in Jupyter Notebook computational environment.

The following tools and libraries were used to develop the system.

• AndroPyTool [63]: AndroPyTool is used to extract static and dynamic fea-

tures from Android applications. In this study, only static features are ex-

tracted using this tool. It integrates numerous well-known analytics tools for

Android applications, such as DroidBox, FlowDroid, Strace, AndroGuard,

and VirusTotal. It analyzes the application and performs reverse engineer-

ing to get source files from the apk file. Then, using various integrated tools,

it extracts Permissions, API Calls, and other static features and generates

feature vectors in JSON and CSV format. These feature vectors are the

primary resources for data preprocessing and other steps.

• Jupyter-Notebook [64]: The Jupyter Notebook is an open-source software

application that enables one to create and exchange live data, calculations,

visualizations, and narrative text documents.

The implementation was carried out on a system with following specifications.

• Operating System: Windows 10

• RAM: 16.00 GB

• CPU: 3.70GHz AMD Ryzen 5 3400G with Radeon Vega Graphics

• Platform: 64 bit
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Table 5.1: Dataset

Dataset Samples Benign Samples Malware Samples
Drebin 15030 9470 5560

Android Malware
Genome Project

3739 1200 2539

5.2 Dataset

In this study, the Drebin [19] and the Android Malware Genome Project [65]

datasets are used. According to the literature review, these two datasets are

the most frequently used datasets in Android malware detection. Hence it is

convenient to use such datasets to compare this study with existing works. The

datasets are used separately, instead of being compiled into one to ensure the

approach’s applicability and generalizability. The description of the datasets is

depicted in Table 5.1.

The Drebin dataset contains 5,560 malware applications from 179 different

malware families. Also, 9470 benign applications derived from the Google Play

Store are incorporated here for classifying the malware properly.

The Android Malware Genome Project dataset contains 1,200 malware samples

that cover most existing Android malware families. Here, 2539 benign applications

derived from the Google Play Store are incorporated. In the rest of the study, this

dataset is referred to as Malgenome.

Only Permissions and API Calls are considered in this work. In total, 73 API

Calls are found in the Drebin dataset and 69 API Calls are found in the Android

Malware Genome Project dataset. Similarly, 114 Permissions are found in the

Drebin dataset and 113 Permissions are found in the Android Malware Genome

Project dataset.
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5.3 Significant API Calls Analysis

In assessing the significant API Calls in Android malware detection, the proposed

workflow is carried out. Only API Calls are evaluated in this subsection to under-

stand the discrete significance of API Calls in Android malware detection. The

outcomes and insights from each step of the approach are described in this sub-

section.

5.3.1 Identification of Feature Selection Technique and Min-

imal Range of Features for API Calls

In order to identify the appropriate feature selection technique for malware detec-

tion and corresponding minimal range of API Calls, incremental feature selection

techniques are performed for all of the feature selection techniques mentioned in

Section 4.4. Plotting the performance metrics with regards to the increasing num-

ber of API Calls assists in identifying the appropriate feature selection technique

and minimal range of API Calls.

Using different feature selection techniques, all features are evaluated in an

incremental fashion to choose the minimal number of features. Like, for 1 to

n number of features, each set (i.e. set 1 : 1 feature, set 2 : 2 features, set 3 :

3 features, ... set n: n features) is evaluated using those techniques and their

performance metrics are plotted with respect to number of features. To find out a

suitable technique, those minimal ranges of features are used rather than imposing

a predetermined feature selection technique. The technique which yields the lowest

minimal range of features is selected for next step.

Recursive Feature Elimination (RFE) with the Random Forest classifier pro-

vides the minimal range of features for both the Drebin and Malgenome data

sets. This can be deduced from Fig (5.1) and (5.2) which represents the Drebin

and the Malgenome data sets respectively. To clarify, the sub graph for AU-ROC
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curve is not the standard AU-ROC curve, Here, the AU-ROC curve is plotted

with respect to increasing number of features. For 1 to n number of features, the

AU-ROC curve is calculated and plotted with respect to the number of features.

For the Drebin dataset, according to the Fig (5.1), as the number of API

Calls is increased, the performances (Accuracy, Precision, Recall, F1-score, AU-

ROC curve) are also increased. Initially, there is ups and down in performances

for first five features. This is because the small number of features (1 to 5) can

not produce stable performance. So, that zigzag pattern is quite random for small

number of features. Afterward, the performance metrics are increased with respect

to increasing number of features. However, in the range between 20-25 API Calls

(approximately), the performance metrics are getting stable and remain constant

for the rest of the API Calls. The performance lines remain horizontal with respect

to the number of API Calls from the minimal range of features. So, it can be

inferred that by taking those 20-25 API Calls, the performances are close enough

to the actual performances of all the 73 API Calls.

Similar phenomena can be deduced from Figure (5.2). In the case of the

Malgenome dataset, from Figure (5.2), it can be inferred that the minimal range

of features is 17-22 API Calls approximately. After that range, the performances

remain stable practically. Malware detection performances within the range are

similar to taking all of the 69 API calls.

The minimal ranges for all the feature selection techniques are depicted in

Table 5.2. From the experiments, the best feature selection technique for API Calls

reduction is Recursive Feature Elimination (RFE) with Random Forest Classifier

as it provides the lowest minimal range among other techniques for both data sets.

RFE with Gradient Boosting Classifier, SelectFromModel with Random Forest

Classifier, and Extra Trees Classifier also give a comparatively lower minimal range

for both data sets. Other feature selection techniques do not perform equally for

both data sets. For instance, the Univariate ROC-AUC Score performs better for
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(a) Precision, Recall, Accuracy, F1-score with respect to increasing number of features

(b) AU-ROC curve with respect to increasing number of features

Figure 5.1: Minimal Range of Features Identification using Recursive Feature
Elimination with Random Forest Classifier for Drebin Dataset
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(a) Precision, Recall, Accuracy, F1-score with respect to increasing number of features

(b) AU-ROC curve with respect to increasing number of features

Figure 5.2: Minimal Range of Features Identification using Recursive Feature
Elimination with Random Forest Classifier for Malgenome Dataset
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Table 5.2: Minimal Range of Features (API Calls) using Different Feature Selection
Techniques

Feature Selection
Technique

Minimal Range
for Drebin

Minimal Range
for Malgenome

Mutual Information
Gain

36-40 43-48

Univariate ROC-AUC
Score

35-38 25-30

RFE with Gradient
Boosting Classifier

24-30 23-30

RFE with Random
Forest Classifier

20-25 17-22

SelectKBest with chi2 42-47 37-42
SelectFromModel with

Random Forest Classifier
23-30 17-25

SelectFromModel with
Extra Trees Classifier

25-32 19-24

the Malgenome dataset but comparatively results in poor for the Drebin dataset.

5.3.2 Correlation-based Feature Elimination (CFE) for API

Calls

Before proceeding to the performance evaluation, the correlation-based feature

elimination (CFE) is performed on the selected minimal range of API Calls. Ex-

perimental results show that CFE can reduce the API Calls without limiting the

performances. The reduction of API Calls is depicted in Table 5.3. For instance,

CFE can reduce 20 features to 17 and 17 features to 15 features respectively for

the Drebin and Malgenome data sets.
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Table 5.3: Correlation-based Feature Elimination (CFE) on Minimal Feature Sets
for Significant API Calls

Drebin Malgenome
Number of

API Calls in
Minimal Feature

Sets

Reduced Number
of API Calls

with CFE

Number of
API Calls in

Minimal Feature
Sets

Reduced Number
of API Calls

with CFE

20 17 17 15
21 18 18 16
22 19 19 16
23 20 20 19
24 21 21 20
25 21 22 21

5.3.3 Performance of Significant API Calls in Malware De-

tection

Finally, the reduced set of Significant API Calls are evaluated based on the per-

formance metrics, execution time, and comparison with existing works.

Performance Metrics of the Significant API Calls

The performance evaluation for the significant API Calls are based on five metrics.

The evaluation is described in Table 5.4 and 5.5 for the minimal range of API

Calls. Table 5.4 shows that for the Drebin dataset, the performance metrics using

significant API Calls are close to the performance metrics of using all the API

Calls (73). Table 5.5 also shows that for the Malgenome dataset, the significant

API Calls performs almost identically to the the full feature set of API Calls (69).

Specifically, how many significant API calls should be selected? - It depends on

the requirement of the stakeholders. However, it is suggested to use the range of

17-21 significant API Calls based on the performances.

Several works deal with significant API Calls for Android malware detection.

DroidAPIMiner [13] identifies significant 169 API Calls and achieves 99% accuracy.

Zhao et al. [14] achieve 93% accuracy and 93% precision using significant 20 API

Calls. Alazab et al. [15] achieve 0.943 F1 using significant 1326 API Calls. The
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performance of significant API Calls cannot be compared with these works due to

the use of different data sets. But, these studies suggest that the performance of

significant API Calls is reasonable in this domain.

Table 5.4: Performance Evaluation of Significant API Calls for Drebin
Feature

Selection
Techniques

Number of
API Calls

Reduced
API Calls
with CFE

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 AUC

None
(All Features)

73 - 97.38 98.07 94.63 0.9631 0.9941

RFE with
Random
Forest

Classifier

20 17 95.60 95.76 91.95 0.9379 0.9846
21 18 95.77 95.71 92.50 0.9405 0.9869
22 19 95.98 96.33 92.46 0.9433 0.9881
23 20 96.08 96.51 92.54 0.9446 0.9877
24 21 96.46 96.86 93.27 0.9501 0.9895
25 21 96.50 96.94 93.31 0.9507 0.9896

Table 5.5: Performance Evaluation of Significant API Calls for Malgenome
Feature

Selection
Techniques

Number of
API Calls

Reduced
API Calls
with CFE

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 AUC

None
(All Features)

69 - 97.79 98.03 95.64 0.9678 0.9960

RFE with
Random
Forest

Classifier

17 15 96.74 97.35 93.23 0.9517 0.9898
18 16 97.26 96.68 95.49 0.9603 0.9921
19 16 97.26 97.12 95.04 0.9600 0.9935
20 19 97.63 97.73 95.49 0.9654 0.9932
21 20 97.47 97.43 95.34 0.9632 0.9942
22 21 97.53 97.72 95.19 0.9639 0.9942

Execution Time of the Significant API Calls

Figure 5.3 shows the execution time analysis of significant API Calls and All API

Calls with respect to increasing number of data size. According to that, for Drebin

and Malgenome dataset, the execution time difference between significant API

Calls and all API Calls is increasing notably with respect to data size. The lines

denoting execution time of significant API Calls and all API Calls are diverging

with the increase of data size. For large data sets, this time would be substantially

higher according to the plots. This finding enables large scale application of this

approach using significant API Calls as it would take less execution time.
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(a) Execution Time with respect to Data Size for Drebin Data Set

(b) Execution Time with respect to Data Size for Malgenome Data Set

Figure 5.3: Execution Time of Significant and All API Calls with respect to Data
Size for Drebin and Malgenome Data sets

5.3.4 Top API Calls in Android Malware Detection

Finally, the top 25 API Calls are analyzed and reported. Table 5.6 shows the

top 25 significant API Calls in Malware Detection for the Drebin dataset. These
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API Calls are derived from the feature selection technique – RFE with Random

Forest Classifier. Also, these 25 API Calls are almost identical to the Malgenome

dataset except 3 API Calls. More data instances would be conducive to generating

a generalizable list of significant API Calls. Yet, as this study primarily suggests

an approach for significant API Calls, the dataset to dataset it may slightly vary

due to the inconsistency and time of data sets.

The top 25 API Calls include some sensitive API Calls which might be used to

violate user’s privacy. For instance, android.telephony.SmsManager, android. tele-

phony.gsm.SmsManager, TelephonyManager.getNetworkOperator, etc. are sensi-

tive from user’s perspective.

Table 5.6: Top API Calls in Android Malware Detection

TOP 25 SIGNIFICANT API CALLS
transact TelephonyManager.getNetworkOperator

onServiceConnected Landroid.content.Context.registerReceiver
bindService Ljava.lang.Class.getField

attachInterface android.content.pm.PackageInfo
ServiceConnection TelephonyManager.getLine1Number
android.os.Binder Ljava.lang.Class.getMethod

Ljava.lang.Class.getCanonicalName android.telephony.gsm.SmsManager
Ljava.lang.Class.getMethods TelephonyManager.getSubscriberId

Ljava.lang.Class.cast Ljava.lang.Object.getClass
Ljava.net.URLDecoder TelephonyManager.getDeviceId

android.content.pm.Signature HttpUriRequest
android.telephony.SmsManager Runtime.exec

ClassLoader

5.4 Significant Permissions Analysis

In assessing the significant Permissions in Android malware detection, the pro-

posed workflow is carried out. Only Permissions are evaluated in this subsection

to understand the discrete significance of Permissions in Android malware detec-

tion. The outcomes and insights from each step of the approach are described in

this subsection.
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5.4.1 Identification of Feature Selection Technique and Min-

imal Range of Features for Permissions

In order to identify the appropriate feature selection technique for malware detec-

tion and corresponding minimal range of Permissions, incremental feature selection

techniques are performed for all of the feature selection techniques mentioned in

Section 4.4. Plotting the performance metrics with regards to the increasing num-

ber of Permissions assists in identifying the appropriate feature selection technique

and minimal range of Permissions.

Using different feature selection techniques, all features are evaluated in an

incremental fashion to choose the minimal number of features. Like, for 1 to

n number of features, each set (i.e. set 1 : 1 feature, set 2 : 2 features, set 3 :

3 features, ... set n: n features) is evaluated using those techniques and their

performance metrics are plotted with respect to number of features. To find out a

suitable technique, those minimal ranges of features are used rather than imposing

a predetermined feature selection technique. The technique which yields the lowest

minimal range of features is selected for next step.

Recursive Feature Elimination (RFE) with the Random Forest classifier pro-

vides the minimal range of features for both the Drebin and Malgenome data

sets. This can be deduced from Fig (5.4) and (5.5) which represents the Drebin

and the Malgenome data sets respectively. To clarify, the sub graph for AU-ROC

curve is not the standard AU-ROC curve, Here, the AU-ROC curve is plotted

with respect to increasing number of features. For 1 to n number of features, the

AU-ROC curve is calculated and plotted with respect to the number of features.

For the Drebin dataset, according to the Fig (5.4), as the number of Permis-

sions is increased, the performances (Accuracy, Precision, Recall, F1 score, AUC)

are also increased. Initially, there is ups and down in performances for first five

features. This is because the small number of features (1 to 15) can not produce
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(a) Precision, Recall, Accuracy, F1-score with respect to increasing number of features

(b) AU-ROC curve with respect to increasing number of features

Figure 5.4: Minimal Range of Features Identification using Recursive Feature
Elimination with Random Forest Classifier for Drebin Dataset
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(a) Precision, Recall, Accuracy, F1-score with respect to increasing number of features

(b) AU-ROC curve with respect to increasing number of features

Figure 5.5: Minimal Range of Features Identification using Recursive Feature
Elimination with Random Forest Classifier for Malgenome Dataset
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stable performance. So, that zigzag pattern is quite random for small number of

features. Afterward, the performance metrics are increased with respect to in-

creasing number of features. However, in the range between 34-38 Permissions

(approximately), the performance metrics are getting stable and remain constant

for the rest of the Permissions. The performance lines remain horizontal with

respect to the number of Permissions from the minimal range of features. So, it

can be inferred that by taking those 34-38 Permissions, the performances are close

enough to the actual performances of all the 114 Permissions.

Similar phenomena can be deduced from Figure (5.5). In the case of the

Malgenome dataset, from Figure (5.5), it can be inferred that the minimal range

of features is 23-27 Permissions approximately. After that range, the performances

remain stable practically. Malware detection performances within the range are

similar to taking all of the 113 Permissions.

Table 5.7: Minimal Range of Features (Permissions) using Different Feature Se-
lection Techniques

Feature Selection
Technique

Minimal Range
for Drebin

Minimal Range
for Malgenome

Mutual Information
Gain

63-70 85-90

RFE with Gradient
Boosting Classifier

38-42 25-30

RFE with Random
Forest Classifier

34-38 23-27

SelectKBest with chi2 42-47 43-46
SelectFromModel with

Random Forest Classifier
35-43 27-32

SelectFromModel with
Extra Trees Classifier

40-47 30-35

The minimal ranges for all the feature selection techniques are depicted in Table

5.7. From the experiments, the best feature selection technique for Permissions

reduction is Recursive Feature Elimination (RFE) with Random Forest Classifier
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as it provides the lowest minimal range among other techniques for both data

sets. RFE with Gradient Boosting Classifier and SelectFromModel with Random

Forest Classifieralso gives a comparatively lower minimal range for both data sets.

Other feature selection techniques do not perform equally for both data sets.

For instance, Mutual Information Gain and Univariate ROC-AUC scores perform

inadequately for both datasets. Univariate ROC-AUC score is not reported here

as it fails to reach performance close to all Permissions.

5.4.2 Correlation-based Feature Elimination (CFE) for Per-

missions

Before proceeding to the performance evaluation, the correlation-based feature

elimination (CFE) is performed on the selected minimal range of Permissions.

Experimental results show that CFE can reduce the Permissions without limit-

ing the performances. The reduction of Permissions depicted in Table 5.8. For

instance, CFE can reduce 34 features to 33 and 23 features to 22 features respec-

tively for the Drebin and Malgenome data sets.

Table 5.8: Correlation-based Feature Elimination (CFE) on Minimal Feature Sets
for Permissions

Drebin Malgenome
Number of

Permissions in
Minimal Feature

Sets

Reduced Number
of Permissions

with CFE

Number of
Permissions in

Minimal Feature
Sets

Reduced Number
of Permissions

with CFE

34 33 23 22
35 34 24 23
36 35 25 24
37 36 26 25
38 37 27 26
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5.4.3 Performance of Significant Permissions in Malware

Detection

Finally, the reduced set of Significant Permissions are evaluated based on the

performance metrics, execution time, and comparison with existing works.

Performance Metrics of the Significant Permissions

The performance evaluation for the significant API Calls is based on five metrics.

The evaluation is described in Table 5.9 and 5.10 for the minimal range of Permis-

sions. Table 5.9 shows that for the Drebin dataset, the performance metrics using

significant Permissions are close to the performance metrics of using all the Permis-

sions (114). Table 5.10 also shows that for the Malgenome dataset, the significant

Permissions performs almost identically to the the full feature set of Permissions

(113). Specifically, how many significant Permissions should be selected? - It de-

pends on the requirement of the stakeholders. However, it is suggested to use the

range of 33-37 significant Permissions based on the performances. The higher the

minimal range from the two data sets is recommended to avoid biases.

Several works deal with significant Permissions for Android malware detec-

tion. SigPID [16] identifies significant 22 Permissions and achieves 95.63% accu-

racy, 97.54% precision, 93.62% recall, and 0.9554 F1-score. Altaher et al. [17]

achieve 91% accuracy using significant 24 Permissions. Wang et al. [18] achieve

92.79% accuracy using significant 40 Permissions. The performance of significant

Permissions cannot be compared with these works due to the use of different data

sets. But, these studies suggest that the performance of significant Permissions is

reasonable in this domain.
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Table 5.9: Performance Evaluation of Significant Permissions for Drebin
Feature

Selection
Techniques

Number of
Permissions

Reduced
Permissions
with CFE

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 AUC

None
(All Features)

114 96.00 96.51 92.28 0.9433 0.9877

RFE with
Random
Forest

Classifier

34 33 95.46 96.20 91.07 0.9355 0.9838
35 34 95.38 95.87 91.18 0.9345 0.9843
36 35 95.66 96.15 91.69 0.9386 0.9840
37 36 95.70 96.19 91.76 0.9392 0.9843
38 37 95.82 96.31 91.99 0.9409 0.9840

Table 5.10: Performance Evaluation of Significant Permissions for Malgenome
Feature

Selection
Techniques

Number of
Permissions

Reduced
Permissions
with CFE

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 AUC

None
(All Features)

113 - 96.89 97.41 93.67 0.9547 0.9842

RFE with
Random
Forest

Classifier

23 22 96.58 95.60 94.05 0.9480 0.9863
24 23 96.74 96.05 94.05 0.9503 0.9864
25 24 96.68 96.34 93.57 0.9493 0.9888
26 25 96.92 96.62 94.05 0.9530 0.9891
27 26 96.97 96.63 94.21 0.9538 0.9893

Execution Time of the Significant Permissions

Figure 5.6 shows the execution time analysis of significant Permissions and All

Permissions with respect to increasing number of data size. According to that, for

Drebin and Malgenome dataset, the execution time difference between significant

Permissions and all Permissions is increasing notably with respect to data size.

The lines denoting execution time of significant Permissions and all Permissions

are diverging with the increase of data size. For large data sets, this time would

be substantially higher according to the plots. This finding enables large scale

application of this approach using significant Permissions as it would take less

execution time.

5.4.4 Top Permissions in Android Malware Detection

Finally, the top 40 Permissions are analyzed and reported. According to the

Drebin dataset, the lowest minimal range is in between 33-37 Permissions. There-

fore, the top 40 Permissions are reported. Table 5.11 shows the top 40 significant
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(a) Execution Time with respect to Data Size for Drebin Data Set

(b) Execution Time with respect to Data Size for Malgenome Data Set

Figure 5.6: Execution Time of Significant and All Permissions with respect to
Data Size for Drebin and Malgenome Data sets

Permissions in Malware Detection for the Drebin dataset. These Permissions are

derived from the feature selection technique – RFE with Random Forest Classi-

fier. Also, these 40 Permissions are almost identical to the Malgenome dataset
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except 2 Permissions. More data instances would be conducive to generating a

generalizable list of significant Permissions. Yet, as this study primarily suggests

an approach for significant Permissions, the dataset to dataset it may slightly vary

due to the inconsistency and time of data sets.

The top 25 Permissions include some sensitive Permissions which might be used

to violate user’s privacy. For instance, SEND SMS, READ SMS, WRITE SMS,

RECORD AUDIO, MANAGE ACCOUNTS, WRITE SETTINGS, WRITE APN

SETTINGS, CALL PHONE, etc. are sensitive Permissions.

Table 5.11: Top Permissions in Android Malware Detection

TOP 40 SIGNIFICANT PERMISSIONS
SEND SMS BLUETOOTH
READ PHONE STATE READ EXTERNAL STORAGE
GET ACCOUNTS VIBRATE
RECEIVE SMS ACCESS NETWORK STATE
READ SMS GET TASKS
USE CREDENTIALS SET WALLPAPER
MANAGE ACCOUNTS ACCESS COARSE LOCATION
WRITE SMS WRITE SETTINGS
READ SYNC SETTINGS KILL BACKGROUND PROCESSES
WRITE HISTORY BOOKMARKS CHANGE NETWORK STATE
INSTALL PACKAGES CALL PHONE
CAMERA READ LOGS
READ HISTORY BOOKMARKS SYSTEM ALERT WINDOW
INTERNET CHANGE WIFI STATE
RECORD AUDIO READ CONTACTS
ACCESS LOCATION EXTRA COMMANDS ACCESS WIFI STATE
MODIFY AUDIO SETTINGS WRITE EXTERNAL STORAGE
BROADCAST STICKY ACCESS FINE LOCATION
WAKE LOCK WRITE SYNC SETTINGS
RECEIVE BOOT COMPLETED WRITE APN SETTINGS

5.5 Significant Ensemble Features Analysis

Aswini et al. [11] suggests that ensemble features (Permissions and API Calls) are

more effective in Android malware detection. In assessing the significant ensemble

features in Android malware detection, the proposed workflow is carried out. Both

Permissions and API Calls are considered in ensemble features analysis. In total
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187 (114 Permissions and 73 API Calls) and 184 (113 Permissions and 69 API

Calls), ensemble features are analyzed respectively for Drebin and Malgenome

data sets. The outcomes and insights from each step of the approach are described

in this subsection.

5.5.1 Identification of Feature Selection Technique and Min-

imal Range of Features for Ensemble Features

In order to identify the appropriate feature selection technique for malware detec-

tion and corresponding minimal range of ensemble features, incremental feature

selection techniques are performed for all of the feature selection techniques men-

tioned in Section 4.4. Plotting the performance metrics with regards to the in-

creasing number of ensemble features assists in identifying the appropriate feature

selection technique and the minimal range of ensemble features.

Using different feature selection techniques, all features are evaluated in an

incremental fashion to choose the minimal number of features. Like, for 1 to

n number of features, each set (i.e. set 1 : 1 feature, set 2 : 2 features, set 3 :

3 features, ... set n: n features) is evaluated using those techniques and their

performance metrics are plotted with respect to number of features. To find out a

suitable technique, those minimal ranges of features are used rather than imposing

a predetermined feature selection technique. The technique which yields the lowest

minimal range of features is selected for next step.

Recursive Feature Elimination (RFE) with the Random Forest classifier pro-

vides the minimal range of features for both the Drebin and Malgenome data

sets. This can be deduced from Fig (5.7) and (5.8) which represents the Drebin

and the Malgenome data sets respectively. To clarify, the sub graph for AU-ROC

curve is not the standard AU-ROC curve, Here, the AU-ROC curve is plotted

with respect to increasing number of features. For 1 to n number of features, the

AU-ROC curve is calculated and plotted with respect to the number of features.
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(a) Precision, Recall, Accuracy, F1-score with respect to increasing number of features

(b) AU-ROC curve with respect to increasing number of features

Figure 5.7: Minimal Range of Features Identification using Recursive Feature
Elimination with Random Forest Classifier for Drebin Dataset
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(a) Precision, Recall, Accuracy, F1-score with respect to increasing number of features

(b) AU-ROC curve with respect to increasing number of features

Figure 5.8: Minimal Range of Features Identification using Recursive Feature
Elimination with Random Forest Classifier for Malgenome Dataset
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For the Drebin dataset, according to the Fig (5.7), as the number of ensemble

features is increased, the performances (Accuracy, Precision, Recall, F1 score,

AUC) are also increased. Initially, there is ups and down in performances for

first five features. This is because the small number of features (1 to 8) can

not produce stable performance. So, that zigzag pattern is quite random for small

number of features. Afterward, the performance metrics are increased with respect

to increasing number of features. However, in the range between 30-35 ensemble

features (approximately), the performance metrics are getting stable and remain

constant for the rest of the ensemble features. The performance lines remain

horizontal with respect to the number of ensemble features from the minimal

range of features. So, it can be inferred that by taking those 30-35 ensemble

features, the performances are close enough to the actual performances of all the

187 ensemble features.

Similar phenomena can be deduced from Figure (5.8). In the case of the

Malgenome dataset, from Figure (5.8), it can be inferred that the minimal range

of features is only 15-20 ensemble features approximately. After that range, the

performances remain stable practically. Malware detection performances within

the range are similar to taking all of the 184 ensemble features.

The minimal ranges for all the feature selection techniques are depicted in Table

5.12. From the experiments, the best feature selection technique for ensemble

features reduction is Recursive Feature Elimination (RFE) with Random Forest

Classifier as it provides the lowest minimal range among other techniques for both

data sets. RFE with Gradient Boosting Classifier and SelectFromModel with

Random Forest and Extra Trees Classifier also gives a comparatively lower minimal

range for both data sets. Other feature selection techniques do not perform equally

well for both data sets. For instance, Mutual Information Gain performs poorly

for both data sets.
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Table 5.12: Minimal Range of Features (Ensemble Features) using Different Fea-
ture Selection Techniques

Feature Selection
Technique

Minimal Range
for Drebin

Minimal Range
for Malgenome

Mutual Information
Gain

60-70 52-57

RFE with Gradient
Boosting Classifier

32-37 25-32

RFE with Random
Forest Classifier

30-35 15-20

SelectKBest with chi2 50-55 37-43
SelectFromModel with

Random Forest Classifier
37-45 25-35

SelectFromModel with
Extra Trees Classifier

38-45 17-30

Table 5.13: Correlation-based Feature Elimination (CFE) on Minimal Feature
Sets for Ensemble Features

Drebin Malgenome
Number of Ensemble Features

in Minimal Feature Sets
Reduced Number of

Ensemble Features with CFE
Number of Ensemble Features

in Minimal Feature Sets
Reduced Number of

Ensemble Features with CFE
20 17 17 15
21 18 18 16
22 19 19 16
23 20 20 19
24 21 21 20
25 21 22 21

5.5.2 Correlation-based Feature Elimination (CFE) for En-

semble Features

Before proceeding to the performance evaluation, the correlation-based feature

elimination (CFE) is performed on the selected minimal range of ensemble fea-

tures. Experimental results show that CFE can reduce ensemble features without

limiting the performances. The reduction of ensemble features is depicted in Table

5.13. For instance, CFE can reduce 35 features to 30 and 15 features to 12 features

respectively for the Drebin and Malgenome data sets.

75



5.5.3 Performance of Significant Ensemble Features in Mal-

ware Detection

Finally, the reduced set of Significant ensemble features are evaluated based on

the performance metrics, execution time, and comparison with existing works.

Performance Metrics of the Significant Ensemble Features

The performance evaluation for the significant API Calls is based on five met-

rics. The evaluation is described in Table 5.14 and 5.15 for the minimal range

of ensemble features. Table 5.14 shows that for the Drebin dataset, the perfor-

mance metrics using significant ensemble features are close to the performance

metrics of using all the ensemble features (187). Table 5.15 also shows that for

the Malgenome dataset, the significant ensemble features perform almost identi-

cally to the the full feature set of ensemble features (184). Specifically, how many

significant ensemble features should be selected? - It depends on the requirement

of the stakeholders. However, it is suggested to use the range of 30-35 significant

ensemble features based on the performances. The higher the minimal range from

the two data sets is recommended to avoid biases.

Several works deal with significant ensemble features for Android malware de-

tection. Aswini et al. [11] identifies significant 168 ensemble features and achieves

93.02% accuracy. Zhao et al. [12] achieve 97.5% accuracy and 97.5% recall using

significant 398 ensemble features. The performance of significant ensemble fea-

tures cannot be compared with these works due to the use of different data sets.

But, these studies suggest that the performance of significant ensemble features is

reasonable in this domain.
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Table 5.14: Performance Evaluation of Significant Ensemble Features for Drebin
Feature

Selection
Techniques

Number of
Ensemble
Features

Reduced
Features

with CFE

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 AUC

None
(All Features)

187 - 98.27 98.84 96.36 0.9758 0.9968

RFE with
Random
Forest

Classifier

30 25 97.19 97.23 94.96 0.9607 0.9933
31 26 97.29 97.27 95.18 0.9620 0.9935
32 27 97.31 97.34 95.18 0.9624 0.9935
33 28 97.53 97.53 95.59 0.9654 0.9935
34 29 97.59 97.79 95.51 0.9663 0.9933
35 30 97.53 97.61 95.51 0.9654 0.9934

Table 5.15: Performance Evaluation of Significant Ensemble Features for
Malgenome

Feature
Selection

Techniques

Number of
Ensemble
Features

Reduced
Features

with CFE

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 AUC

None
(All Features)

184 - 98.32 98.95 96.24 0.9755 0.9980

RFE with
Random
Forest

Classifier

15 12 96.68 97.68 92.78 0.9514 0.9885
16 12 97.42 98.20 94.43 0.9624 0.9900
17 12 97.26 97.59 94.58 0.9603 0.9884
18 13 97.74 97.65 95.94 0.9673 0.9939
19 15 97.58 97.01 96.09 0.9652 0.9951
20 15 97.32 96.58 95.78 0.9614 0.9944

Execution Time of the Significant Ensemble Features

Figure 5.9 shows the execution time analysis of significant ensemble features and

All ensemble features with respect to increasing number of data size. According

to that, for Drebin and Malgenome dataset, the execution time difference between

significant ensemble features and all ensemble features is increasing notably with

respect to data size. The lines denoting execution time of significant ensemble

features and all ensemble features are diverging with the increase of data size. For

large data sets, this time would be substantially higher according to the plots. This

finding enables large scale application of this approach using significant ensemble

features as it would take less execution time.
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(a) Execution Time with respect to Data Size for Drebin Data Set

(b) Execution Time with respect to Data Size for Malgenome Data Set

Figure 5.9: Execution Time of Significant and All Ensemble Features with respect
to Data Size for Drebin and Malgenome Data sets
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5.5.4 Top Ensemble Features in Android Malware Detec-

tion

Finally, the top 30 ensemble features are analyzed and reported. According to the

Drebin dataset, the lowest minimal range is in between 25-30 ensemble features.

Therefore, the top 30 ensemble features are reported. Table 5.16 shows the top 30

significant ensemble features in Malware Detection for the Drebin dataset. These

ensemble features are derived from the feature selection technique – RFE with

Random Forest Classifier. Also, these 30 ensemble features are almost identical to

the Malgenome dataset except 4 ensemble features. More data instances would be

conducive to generating a generalizable list of significant ensemble features. Yet,

as this study primarily suggests an approach for significant ensemble features, the

dataset to dataset it may slightly vary due to the inconsistency and time of data

sets.

Table 5.16: Top Ensemble Features in Android Malware Detection

TOP 30 SIGNIFICANT ENSEMBLE FEATURES
transact RECEIVE SMS

onServiceConnected Ljava.lang.Class.getDeclaredField
bindService READ SMS

attachInterface getCallingUid
ServiceConnection Ljavax.crypto.spec.SecretKeySpec

SEND SMS USE CREDENTIALS
Ljava.lang.Class.getCanonicalName MANAGE ACCOUNTS

Ljava.lang.Class.getMethods TelephonyManager.getLine1Number
Ljava.lang.Class.cast DexClassLoader

Ljava.net.URLDecoder HttpGet.init
android.telephony.SmsManager SecretKey

READ PHONE STATE Ljavax.crypto.Cipher
Landroid.content.Context.registerReceiver WRITE SMS

Ljava.lang.Class.getField READ SYNC SETTINGS
GET ACCOUNTS AUTHENTICATE ACCOUNTS

The top 30 ensemble features include some sensitive features which might be

used to violate user’s privacy. For instance, SEND SMS, READ SMS, WRITE

SMS, MANAGE ACCOUNTS, USE CREDENTIALS, android.telephony. Sms-
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Manager, etc. are sensitive features.

Also, the top 30 ensemble features have 24 common features with top 25 API

Calls and top 25 Permissions (14 from API Calls and 10 from Permissions respec-

tively).

5.6 Summary

This chapter provides the evaluation of significant features in Android malware

detection. It evaluates significant API Calls, significant Permissions, and signif-

icant ensemble features separately. Experimental results suggest that analyzing

significant features not only reduces complexity but also maintains performance

as close to all features. This study is assessed on two benchmark datasets. For

the Drebin dataset, it reduces 73 API Calls to 17-21 API Calls, 114 Permissions

to 33-37 Permissions, and 187 ensemble features to 25-30 features while retaining

performance. For the Malgenome dataset, it reduces 69 API Calls to 15-21 API

Calls, 113 Permissions to 22-26 Permissions, and 184 ensemble features to 12-15

features while retaining performance. Altogether, this study manages to identify

significant features for Android malware detection while maintaining detection

performance.
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Chapter 6

Conclusion

In this study, an approach is proposed for analyzing and identifying significant

features in Android malware detection. In short, the proposed approach exhibits

promises, performs proficiently. This chapter sums up the study and ends by

presenting future works.

6.1 Discussion

This study deals with examining features for reducing the irrelevant ones with-

out overlooking significant features. It presents an approach for significant fea-

tures identification. Significant features are analyzed from three aspects, such

as significant API Calls analysis, significant Permissions analysis, and significant

ensemble features analysis. Primarily, it incrementally employs several feature se-

lection techniques to determine the best-suited feature selection algorithm and the

minimal number of significant features. Analytical results show that RFE with

Random Forest Classifier provides the minimal range of significant features for all

cases. Further, by incorporating a correlation-based feature elimination strategy,

it reduces the minimal range of significant feature sets more.

Experimental results show that significant features perform adeptly with re-

gards to all features set. Also, in terms of run time performance, significant
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features turn out to be more effective. Lastly, significant ensemble features out-

perform individual types of features, like Permissions and API Calls. The figures

and tables of Chapter 5 show that phenomenon more clearly.

If the experiments were not repeated the change may have happened by chance.

The experiments have, however, been replicated with two different data sets to

ensure that the progress demonstrated by the adaptation technique is not random.

6.2 Threats to Validity

This section provides the threats that can hamper the accuracy and effectiveness of

the proposed model. Threats to internal and external validity have been identified

which are given below.

6.2.1 Threats to Internal Validity

The parameters of different techniques and algorithms are susceptible to bias and

can be examined differently by different analysts. For instance, the parameters

of feature selection algorithms, like tree size of Random Forest, the threshold of

ROC-AUC scores, correlation threshold, etc. arise threats to internal validity.

The metric threshold has to be picked carefully. The proposed approach will not

provide a similar performance if the threshold values are changed. It is worth

mentioning that there is not any general consensus on the threshold values, it

varies case to case.

6.2.2 Threats to External Validity

In this study, only the Drebin and Malgenome data sets have been analyzed, which

is subject to bias and lack of generalizability, threatening external validity. All

the imprecision and errors in the dataset would impact the results of this study.
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The evaluation and findings depend on some third-party systems such as An-

droPyTool, Jupyter Notebook, etc. If either of these includes inaccuracies, the

experimental results would also be impacted.

6.3 Challenges and Opportunities in Android Mal-

ware Detection

Almost 10 million new malware are found each month. But there does not exist

any up-to-date dataset of malware. So, their performance in malware detection

is doubtful considering the vast population of the new malware. Dataset inade-

quacy is a vital factor as an appropriate dataset is required for research evaluation.

Therefore, it provokes escalating challenges as well as opportunities for new re-

searchers. Malware data sets should be updated on a regular basis to assure the

effectiveness of the new research and to justify the feasibility of the existing re-

search. Modern data extraction tools for Android, such as Androdata, ApkTool,

Droidbox, Androguard, etc. can efficiently extract static and dynamic data. Using

those tools and collaborating with benign and malware apps sources (e.g., Google

Play Store, VirusShare, etc.), data inadequacy can be reduced.

As existing malwares behavior is decoded by the existing tool or research out-

come; malware authors update existing malware families and create new malware

families frequently to evade detection. They try to trick existing detection sys-

tems by introducing new behavior as well as exhibiting benign behavior. Numer-

ous features and malware families provoke much complexity which may limit and

challenge the progression of Android malware detection. Consequently, malware

detection becomes more challenging.

Most of the existing research only deals with some common features. But it is

more likely that there exist more distinguishable features. For instance, Kabakus

et al. [66] reveal many unknown characteristics of Android malware, however,
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it did not integrate any machine learning technique to detect malware. They

reveal that over-privileged permissions are one of the characteristics of malware.

Besides, they uncover that malware’s average number of incoming and outgoing

connections, the average size of download and upload, etc. are distinguishable

features in malware. It suggests that there will be decent opportunities in exploring

new features.

A lot of opportunities and research directions are available right now. Re-

searchers’ enthusiastic focus on this field would have been beneficial to fight against

the rising malware authors community.

6.4 Future Work

In future work, the approach will be evaluated using different and large data sets.

That will ensure its applicability on large scale and omit biases arisen from data

sets.

Apart from the Permissions and API Calls, other static and dynamics features

will be incorporated for better performance. Features like app metadata, intents,

network activities, system call, file operations, etc. will be used in future work.

Besides, looking for more discernible features would be a promising research

direction. Many leading-edge feature selection techniques can be used to explore

new features and reduce the complexity as there are numerous features inciden-

tally. Reinforcement learning, Deep learning, Bagging, Boosting, Tree-based, and

embedded feature selection techniques can be used for reducing complexity and

discernible features exploration.

Moreover, finding new malware families can be a promising research direction

as malware family is growing exceedingly. How do we detect new malware families

effectively? - would be prospective future research in this regard.
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