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Abstract—Topic modeling is the process of extracting keywords
from documents to characterize and distinguish them from other
documents. It is a process applied to summarize, compare and
analyze large corpus of text. In the software engineering domain,
it has been applied to mine repositories and extract valuable
insight into the important properties and aspects of the project
and its developers. One such important aspect of current project
management efforts is the prediction of issue lifetime. This study
conducts topic modeling on GitHub issues to observe patterns
in the extracted topics and their performance as a feature
for predicting the lifetime of issues. It is observed that issues
from a large collection of projects can yield distinguishable and
comprehensible topics. In terms of predictive performance, the
prediction model with topic modeling performs better than the
previous approach, with a high increase in precision and f1-
measure. Evaluating these findings helps establish topic modeling
as a viable feature in issue-based software development processes.

Index Terms—topic modeling, issue lifetime prediction, mining
software repositories

I. INTRODUCTION

Information Retrieval approaches have become a crucial and
frequently utilized aspect in the field of software engineering.
Topic modeling is one such information retrieval approach
that uses statistical modeling to discover “topics” that define a
document. Topic modeling has been used as a general purpose
tool across multiple domains, such as text summarization [1]–
[3], text similarity [4], [5], sentiment analysis [6], [7], topic
generation [8], [9], software traceability [10] etc.

The domain of software engineering has also seen the
adoption of topic modeling. It has been incorporated into the
field of mining software repositories, such as in source code
analysis [11], cataloging repositories [12], project recommen-
dations [13], topic evolution [14], identification of developers’
characteristics [15], etc. The effectiveness of topic modeling
in these aspects induces its potential in the context of project
issues. Issues are an important artifact of online software
project management systems, like GitHub1, where bugs are
reported, requests for new features are posted and development
processes are discussed and tracked. Topic extracted from the
text and comments in issues can provide insight into issues
and be applied to predict their properties.

An important aspect of issues is their lifetime, which signi-
fies the amount of time and effort exhausted for resolving the

1https://github.com/

task. Predicting the issue resolution time is helpful in project
management processes as it affects decisions for prioritization,
characterization, developer assignment and more. There have
been several approaches for predicting the resolution time
using features like text similarity [16], affective emotions
[17], dynamic and contextual features [18] and cross-project
data [19]. However, topic modeling has yet been utilized for
predicting issue lifetime, which would further augment its
applicability in the software engineering domain.

This study aims to answer three Research Questions (RQ)
to understand the characteristics and applicability of topic
modeling in GitHub issues:

• RQ1: What are the characteristics of topics in issues?
This RQ observes the comprehensibility of topics for
combined and cross-project issues.

• RQ2: How do issue topics perform in predicting issue
resolution time? This RQ generates a prediction model
on issue lifetime incorporating issue topics and observes
its performance compared to the existing approach.

• RQ3: Which topics are important in predicting issue
resolution time? This RQ analyzes the individual pre-
dictability and significance of the extracted topics.

II. RELATED WORK

Several studies previously dealt with GitHub issue lifetime
and some works incorporated topic modeling in mining soft-
ware repositories.

Weiss et al. [16] used past issue reports to predict effort for
new issues. They identified similar past issues by measuring
text similarity. They used KNN for effort estimation based
on text similarity. They evaluated their approach on a single
project, JBoss, with a high enough accuracy regarding actual
effort. However, they did not adopt other static and dynamic
features of issues and considered a single project only.

Rees-Jones et al. [19] incorporated cross-project data of
ten projects instead of single project data. They used static
features of projects and employed the decision tree algorithm
for predicting issue lifetime. Their approach obtained high
precision and low false alarms concerning existing works.
However, they dealt with limited projects which may induce
threats to external validity.

In addition to using static features, Kikas et al. [18] also
incorporated dynamic and contextual features to forecast the
issue’s lifespan. They investigated issues from more than 4000



projects at several phases to take into account the evolving
nature of the issues and the overall state of a project. They used
the Random Forest algorithm by incorporating 21 features
to anticipate the issue’s lifetime within a fixed timeline.
Their work obtained AUC scores ranging from 0.64 to 0.707.
Besides, they also provided a ranking of features based on the
features’ importance for prediction.

None of the existing lifetime prediction studies used topic
modeling that was used in the context of repositories for
mining software. Antoniol et al. [20] used topic modeling
for distinguishing Linguistic features which are used for
classifying issue. To evaluate the naming convention in source
code, Markovtsev et al. [11] integrated topic modeling into
source code, and presented insights on topic modeling. Sharma
et al. [12] used topic modeling for automatically cataloging
GitHub repositories. Orii et al. [13] applied collaborative topic
modeling (LDA) on source code for recommending similar
projects. Thomas et al. [14] analyzed the evolution of topics
across GitHub repositories by incorporating topic modeling
into source code. Linstead et al. [15] used an LDA-based
Author-Topic Model on Eclipse source code to identify the
developer’s characteristics and performance. These studies es-
tablish the viability of topic modeling in software development
artifacts, motivating its application in predicting issue lifetime.

III. METHODOLOGY

The three research questions posed by this study contain
independent approaches along with common processes. These
include extracting topics from the issue documents and the use
of dataset, which are described in the following subsections.

A. Topic Modeling

Latent Dirichlet Allocation (LDA) [21] is a common topic
modeling technique which provides probability distributions of
topic per document and word per topic. LDA deals with two
concerns: how prevalent is a particular word across topics,
and how prevalent are topics in the document? For this study,
LDA’s implementation would yield probability distributions of
topics extracted from issues and the words that populate those
topics. Each issue is treated as a single document, with its
title, body and optionally its comments providing the text.

For this study, LDA is tuned with the following values,
based on [22]:

• alpha = 0.5
• beta = 0.1
• iterations = 100
• fitting = Gibbs Sampling2

As a preprocessing step, code snippets and markdown are
removed from the text. This is done because the language
specific keywords in code e.g., “for”, “if” etc. can divide
topics based on the language used in the project. This would
hamper the concern-wise categorization of issues, for instance,
“debugging”, “feature requests” etc.

2https://github.com/yangliuy/LDAGibbsSampling

Furthermore, documents with less than 20 words are ex-
cluded from the final dataset as small documents have the
potential to skew the extracted topic.

B. Dataset

Two types of datasets are used in this study for extracting
topics and predicting issue resolution time. Description of the
two sets is provided as follows.

1) Combined Project Data: This study adopts the data
used by Kikas et al. [18] (KDP), to utilize the features used
in the literature and conduct a comparative evaluation. The
dataset contains a total of 967,037 issues from 4,024 projects
in GitHub. The project data was originally extracted from
GHTorrent [23]. The issues contain contextual, static and
dynamic information in the form of 50 features.

Along with feature information, the dataset provides cleaned
text of the issues’ title, body and comments. These artifacts
are necessary to conduct topic modeling.

2) Cross-Project Data: A shortcoming of the dataset by
KDP is that it does not distinguish the issues based on the
projects these are contained in. This, therefore, hinders the
opportunity for cross-project topic analysis. In this study,
3 GitHub projects, as listed in Table I, are mined. The
repositories are mined using the GitHub API.

TABLE I
REPOSITORIES FOR CROSS PROJECT ANALYSIS

Project Issues Comments
Google Guava 2433 12630
Mockito 726 3553
Facebook Android SDK 295 1023

IV. EXPERIMENTATION AND RESULTS

This section describes the approaches for answering the
Research Questions (RQs) and their associated findings.

A. RQ1: Issue Topic Characteristics

This RQ qualitatively analyzes the characteristics of topics
extracted from issues. The aim of this RQ is to understand
the characteristics of the topics extracted, for instance, the
comprehensibility of the containing words, ease of labeling
and how differentiable the topics are.

Procedure: First, ten topics are extracted from KDP’s
combined set of issues. The extracted topics are sorted based
on popularity. Popularity is measured by the average of each
topic’s probabilities in the individual documents. These are
derived from LDA’s document to topic probability distribution.
Then, for the ten topics, labels are assigned based on the top
words of the topics. The top words are collected from LDA’s
topic to word probability distribution. Table II lists the ten
sorted topics, complete with top words and assigned labels.

As a separate step, the issues from the three repositories
are used for topic modeling. Since the corpus is significantly
smaller than the combined dataset, only five topics are ex-
tracted for each project. Table III shows the top words for
each topic under the three projects.



TABLE II
COMBINED PROJECT TOPICS

Topic Top words Label
1 user, page, add, http, link, creat, list, search, show, post Feature Request
2 time, make, issue, work, way, test, seem, chang, know Management
3 function, work, valu, code, call, event, set, class, method Code
4 imag, button, click, icon, show, http, menu, screen, window GUI
5 file, error, http, instal, run, build, test, version, packag Deployment
6 server, connect, run, file, version, support, error, instal, start Deployment
7 line, error, file, string, object, type, id, http, return, valu Code
8 de, http, la, le, en, se, el, silli, para, verbos, na Ambiguous
9 info, debug, error, sourc, unknown, null, crash, sever Bug

10 avail, initi, construct, unload, preiniti, postiniti, impserver Initialization

TABLE III
CROSS-PROJECT TOPICS

Topic Google Guava Mockito Facebook Android SDK
1 method, case, methods, make, code, way, im-

plementation
release, version, mockito, make, versions, [x],
beta, time, java

facebook, app, sdk, android, user, application,
code, api, issue, access

2 [original, posted, pm , am , **status.**,
comment, entered

api, mockito, junit, mock, public, code, pow-
ermock, static

pc, method, dscount, prio, scount, sched, nice,
group

3 guava, java, version, gwt, problem, maven,
issue, class, fix

mockito, version, java, build, issue, byte, fix,
seems, thanks, test

i/debug, dialog, login, screen, webview, per-
missions, page, click

4 interfaces, issue, file, google, classpath, jar,
coming, unknown

mockito, error, package, mock, class, issue,
version, android, illegal

i/debug, pc, info/debug, key, url, heap, hash,
debug

5 public, static, extends, type, null, method,
return, string

method, test, mock, class, code, mockito, type,
return, methods

sdk, facebook, issue, android, thanks, sup-
ported, developer

Findings: In combined project topics, as displayed in Table
II, topics can be successfully categorized. Each of the ten
issue topics contains words that are distinct and, in most cases,
interpretable. Despite some words omitting prefix and suffixes,
the core word conveys their context. Other than the eighth
topic, which mostly contains words that cannot be identified
and aptly named Ambiguous, all the topics are categorized. For
instance, due to words like ”imag”, ”button”, ”click”, ”icon”
and more, the fourth topic is named GUI.

Among these topics, the most popular topic in GitHub’s
issues is Feature Request. This is similar to the findings of Liao
et al. [24] where new feature related issues have a majority.
Other important aspects of software development like GUI,
Bug, Deployment etc. are also present in the topic list. This
signifies the applicability of topic modeling in GitHub issues
for automating the categorization of new issues.

For the cross-project issue topics, categorization was not
possible. This was due to very little inter-project topic simi-
larity, repetitions of top words and the saturation of project-
specific keywords. Due to this ambiguity, cross-project issues
were deemed unfit for issue lifetime prediction.

B. RQ2: Issue Lifetime Prediction

This RQ analyzes the applicability of topic modeling in
issues by predicting issue lifetime with the extracted topics
and comparatively evaluating with KDP, the base model.

Procedure: To understand the predictive property of topic
features, prediction models are executed for two feature sets.
In the first setup, only the topic-associated feature set is con-
sidered. For the ten extracted topics from the combined issue
set, a document to topic probability distribution is calculated

using LDA. However, for this dateset, comments are excluded
from the issue text as comments are time-dependent dynamic
features. In this paper, only static features – issue texts (title
and description) – are considered for lifetime prediction.

TABLE IV
PREDICTIVE PERFORMANCE OF THE TWO MODELS – ONE WITH ONLY

TOPICS AS FEATURES AND THE OTHER INCLUDING STATIC ISSUE
FEATURES – COMPARED TO KDP

Days Metric KDP Topic-only Topic+static

1
precision N/A 0.24 0.3
recall N/A 0.52 0.64
f1 N/A 0.33 0.41

7
precision 0.26 0.41 0.48
recall 0.82 0.5 0.67
f1 0.39 0.45 0.56

14
precision 0.13 0.47 0.55
recall 0.8 0.57 0.67
f1 0.23 0.5 0.59

30
precision 0.16 0.54 0.62
recall 0.8 0.58 0.67
f1 0.27 0.55 0.64

90
precision 0.25 0.62 0.69
recall 0.79 0.55 0.67
f1 0.38 0.57 0.68

180
precision 0.2 0.66 0.72
recall 0.81 0.51 0.67
f1 0.32 0.6 0.7

365
precision 0.21 0.69 0.74
recall 0.89 0.5 0.68
f1 0.34 0.55 0.71

*(The bold values represent the best result for that metric)

In the second setup, Rees-Jones et al’s [19] feature set
is adopted along with the ten topics. Their feature set of
seven static features is a reduced version of KDP’s. The
rationale for the feature reduction is that the original feature set



TABLE V
INDIVIDUAL TOPIC IMPORTANCE

Feature Request Management Code GUI Deployment Deployment Code Ambiguous Bug Initialization
Days Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

1 0.21 0.03 0.08 0.04 0.12 0.05 0.08 0.23 0.08 0.07
7 0.2 0.11 0.08 0.04 0.05 0.07 0.19 0.11 0.06 0.08

14 0.19 0 0.15 0.1 0.15 0.08 0.08 0.06 0.13 0.06
30 0.07 0.03 0.07 0.08 0.13 0.09 0.16 0.14 0.16 0.07
90 0.06 0.02 0.12 0.18 0.13 0.03 0.13 0.14 0.21 0
180 0.1 0.06 0.1 0.08 0.15 0.14 0.13 0.12 0.11 0.03
365 0.08 0.12 0.08 0.11 0.12 0.1 0.1 0.16 0.13 0

*(The bold values represent the most important topic for a horizon)

contains many dynamic features as well as unspecified feature
(i.e., textScore). They also demonstrate in their approach that
the reduced static features perform better than all of KDP’s
features. In this work, these seven static features are considered
and incorporated with the ten topic features.

Seven prediction horizons (1, 7, 14, 30, 90, 180 and 365
days) are considered according to KDP. A prediction horizon n
is used for predicting if an issue closes between 0 and n days.
The starting range remains at 0 for all horizons since only
static features are taken for this study. Each range provides
a common time-frame: a day, a week, two weeks, a month,
three months, half a year and a year respectively.

The adoption of prediction horizons converts this prediction
process into an N-binary classification problem, which can eas-
ily be interpreted. Random Forest algorithm is performed on
the dataset for model training and testing. Here the parameters
of the Random Forest algorithm is set as per KDP’s work.

Before conducting the classification, preprocessing steps
are conducted on the dataset. Firstly, the dataset is balanced,
since the target value is unbalanced for the different prediction
horizons. For instance, for the 1 day horizon, approximately
70% issues are open. The inverse is true for the 365 days
horizon. Secondly, the features are normalized, since the topic
features and static features contain different ranges.

Findings:
From the numeric results displayed in Table IV, the follow-

ing findings can be observed.
Firstly, this model with topic-only features generates consis-

tently higher precision than KDP. Conversely, however, KDP’s
recall is higher for all seven prediction horizons. To balance
out the conflict between precision and recall, the f1 score is
considered for understanding the overall correctness of the
model. In this case, the topic-based model contains a better
f1 score than KDP throughout the seven horizons. This is true
for both topic-only and topic+static features.

To expand on the results, the payoff between precision and
recall can be inferred from what they signify in this context.
A low recall model will predict issues that close before n
days to be finished after the horizon n. A low precision model
will predict issues that close over the horizon n to be finished
before n days. In other words, this model would classify some
short issues as long and KDP the opposite.

While this model does overestimate lifetime for some issues,
longer issues would less likely be misclassified as short. As

such, developers will not be assigned less time than what is
required, potentially preventing unwanted adverse effects like
bugs to be inserted due to an unrealistic and tight deadline.

It can be concluded that topic-modeling is an effective tool
for classifying issues and predicting their lifetime.

C. RQ3: Topic Feature Importance

Each of the ten topics represents a category of issues. From
the prediction model, individual numeric significance of the
topics can be extracted. This RQ aims to infer the relation
between the topics or categories and the lifetime of issues.

Procedure: Using the Random Forest Classifier, the feature
importance of the topic associated features is calculated for all
the seven prediction horizons.

Findings: Feature importance of the 10 topics in different
horizons is listed in Table V, with the following observations.

1) The topic Feature Request plays a significant role in
predicting the issue lifetime in the 1 and 7 days horizon.
As Feature Request issues relate to adding a whole new
feature to the software, these issues can take a higher
number of days to be completed. Among the three types
of common changes – corrective, perfective and adaptive
– feature requests, which are adaptive changes, take the
most amount of time to complete [25] [26]. Hence, these
issues cannot usually be closed within a day or a week,
enabling it to be an important feature when predicting
whether issues can be closed early.

2) Compared to adaptive changes, corrective ones – bug
fixing, error handling – take less time to complete [25]
[26]. This is congruent with the findings of this study,
where the topic Bug emerges a significant feature in
the 30 and 90 days horizons. This can be inferred as
the tendency of bug fixing issues being closed within a
month or at most three months.

3) A similar trend is present for the topics titled Code.
Issues that heavily mention the source code can be
interpreted as perfective maintenance, since these focus
on the code instead of any product-level concerns. Such
issues, like refactoring requests, deal with modifications
to the code for better efficiency or comprehensibility
without altering the output of the end product. The
findings show that these are significant features in the
14 and 30 day horizons, earlier than the corrective ones.



This result conforms to perfective maintenance being the
shortest of the three development tasks [25].

4) Other than significant topics, two have shown zero
importance as features for different horizons: Manage-
ment and Initialization. The latter is unimportant for
two horizons while having low importance for the rest.
As the topics are sorted based on popularity, it can
be interpreted that the least popular topic tends to be
unimportant in predicting issue lifetime.

V. THREATS TO VALIDITY

For RQ1, the analysis on cross-project topics was only con-
ducted on three projects. This lessens generalizability, threat-
ening the external validity. Also, for the combined projects’
topics, the labels are manually assigned, which is susceptible
to bias and can be interpreted differently by different analysts.
However, these do not change the outcome of the prediction
model and consequently, the applicability of topic modeling.

For the prediction model, the dataset is adopted from KDP’s
study [18]. Hence, the threats to validity of their dataset also
apply to this study.

VI. FUTURE WORK

With its promising results, this paper can be expanded upon.
Firstly, the breadth of the cross-project analysis will be

increased. While the three projects provide an idea of how
topics would behave, a dataset comparable to the combined
project one can better justify the claims.

Secondly, the implementation of LDA will be expanded, by
considering its non-deterministic properties.

Lastly, the intrinsic significance of individual topics in the
predictive model will be further inferred with the inclusion of
empirical studies with GitHub issues.

VII. CONCLUSION

This study conducted topic modeling on GitHub issues and
analyzed the patterns of the extracted topics and its applicabil-
ity for predicting issue lifetime. It is seen that, when combined
from multiple projects, the issues generate comprehensible
topics that enable concern-specific labeling. Next, these were
used for predicting issue resolution time. With an N-binary
classification using Random Forest, it was observed that the
inclusion of topics as features improves precision and f1-score,
with respect to KDP’s. Lastly, analyzing individual importance
of the topics showed that the context and popularity of topics
can be used to interpret the issue longevity.
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