
Image-to-Image Translation
(CSE 803 Project Report)

Asadullah Hill Galib (Single Project)

CSE, Michigan State University

galibasa@msu.edu

Abstract

Image-to-image translation is a popular and growing
field in computer vision that deals with many sorts of map-
ping between an input image and an output image. This
field is booming currently thanks to the incorporation of
deep learning techniques, particularly generative modeling
techniques. It has a variety of applications, such as im-
age synthesis, segmentation, style transfer, restoration, and
pose estimation, etc. In this project, edge-to-image - an
application of image-to-image translation will be explored.
The goal of this project is to generate colored images from
sketches using a generative model. Conditional GAN-based
architecture is incorporated to accomplish the goal.

1. Problem Definition
The goal of image-to-image translation is to transfer im-

ages from one domain to another while keeping the con-
tent representations intact. Due to the introduction of
deep learning techniques, notably generative modeling ap-
proaches, this subject is now thriving. It has a wide range
of applications, including translation of images from day to
night, translation of images from season to different sea-
sons, translation of edge to image, translation of semantic
segmentation to image, translation of satellite photographs
to Google Maps, translation of black and white photographs
to color, translation of sketches to color photographs, etc.
Figure 1 refers some examples of image-to-image transla-
tion.

Generically, all of the aforementioned applications have
tried to generate output images condition on the input im-
ages. This conditional theme for the image to image trans-
lation is promulgated by Isola et al. [5] in their benchmark
study in this field. They employed a model called the con-
ditional Generative Adversarial Network [6], or cGAN for
image-to-image translation in general, where the generation
of the output image is conditional on the input image. This
cGAN is a type of GAN [3] architecture. Followed by this
benchmark work, a lot of variations of the GAN architec-

Figure 1. Examples of Image-to-Image Translation (image source:
[8])

ture are proposed for image-to-image translation, such as
CycleGAN [11], StarGAN [2], AttGAN [4], etc.

This project aims at generating images from
edges/sketches. Given, edge image representation and
the corresponding original image, a cGAN model will be
trained as described in [5] for generating and discriminat-
ing produced/output image. The discriminator is given a
source image and a target image and is asked to decide
whether the target is a realistic transformation of the source
image. Adversarial loss is used to train the generator,
which encourages it to generate believable images in
the target domain. L1 loss between the generated image
and the intended output image is also used to update the
generator. The generator model is encouraged to construct
credible translations of the original image as a result of the
additional loss.

So, any dataset containing edge image - original image
pair can be used here. This kind of datasets exists, such
as Danbooru [10], Pokemon [1], etc. Also, automatic edge
detected (using edge detector techniques) from sample im-
ages can also be used as the dataset. In terms of evaluation,
mean absolute error and cross-entropy are used. According
to [5], the underlying U-net-based (with skip connection)
generator has been implemented first. On top of that, the
cGAN architecture has been implemented combining gen-

1

erator and discriminator. Finally, the U-net-based generator
and the full cGAN architecture are evaluated and compared.

Section 2 describes background, Section 3 describes
Methodology, Section 4 describes Experimental Evaluation,
Section 5 describes challenges, and Section 6 concludes the
report.

2. Background
This section describes the GAN and cGAN algorithms.

Figure 2. GAN architecture

Figure 3. cGAN architecture

2.1. GAN

GANs (generative adversarial networks) [3] are a type of
artificial intelligence algorithm created to tackle the chal-
lenge of generative modeling. In order to perform unsu-
pervised learning, the GAN creates fake / random-looking
data and attempts to distinguish whether a sample is created
fake data or actual data. Here, the two components - Gener-
ator and Discriminator compete with each other to become
more accurate in their task. In an image generation setting,
the generator starts with a random noise image and attempts
to create fake images that are similar to those in the training
set. Both the original and produced images are sent into the
discriminator. It attempts to distinguish between genuine
and fake images. This cycle is continued as long as the dis-
criminator should be unable to distinguish between genuine
and fake images. In other words, it is minmax game be-
tween Generator and Discriminator, and the algorithm tries
to reach the Nash equilibrium where both components are
in a win-win situation. The overall architecture cGAN is
described in Fig. 2

2.2. Conditional GAN - cGAN

Despite the fact that GAN models may produce new ran-
dom fake images for a given dataset, there is no method to

Figure 4. Generator: U-net architecture (image source: [9])

regulate the sorts of pictures that are generated other than
attempting to decipher the non-linear relationship between
the latent space supplied to the generator and the generated
images. Conditional GAN aka. cGAN [7] closes this gap by
introducing conditions on the generator as well as descrip-
tor. In short, cGAN uses a generator model to conditionally
generate pictures. If a class label is supplied, picture gen-
eration can be conditional on it, allowing for the targeted
production of images of a specific type. The overall archi-
tecture cGAN is described in Fig. 3

3. Methodology
This section describes the overall methodology of the

project, i.e., the underlying architecture, details, and loss
functions.

3.1. Generator

The first part of the GAN architecture: Generator is
implemented using the underlying U-net convolutional ar-
chitecture [9]. This U-net-based Generator consists of
an encoder-decoder pair with skip connections. The en-
coder down-samples the original image sequentially using
Conv2D, ReLU, Batch Normalization layers with strides.
The decoder takes the down-sampled version of the origi-
nal image and starts up-sampling it in a reversed way and
generates the output. To guard against spatial information
losing and to avoid vanishing/exploding gradient problems,
skip connections are used from the individual layer of the
encoder to the corresponding layer of the decoder. The
overview of the U-net architecture is shown in Fig. 4

3.2. Discriminator

In comparison to the generator, the discriminator merely
has the encoder unit. Its goal is to determine whether the
sketch-image combination in the input is real or fake. The
network has been trained to achieve the highest classifica-
tion accuracy possible.

So, any image classifier algorithm can be used as the Dis-

2

criminator. A convolutional neural network similar to last
part (down-sampling) of the U-net architecture is used in
this project. The details of the architecture is described be-
low:

• number of sequential layers: 3

• batch size: 64

• number of epochs: 100

• kernel size: 5x5

• padding: 0

• stride: 2

• Batch Normalization after Conv2D

• LeakyReLU after Batch Normalization

3.3. Loss Function

Let, G denotes the generator, D denotes the discrimina-
tor, x denotes the input sketches, y denotes the real images,
z denotes random noise.

Then, the objective function of the original GAN algo-
rithm can be expressed as

LGAN (G,D) = Ey[logD(y)]

+ Ez[log(1−D(G(z)))] (1)

As the image generation is conditioned on input
sketches, the loss function of the cGAN also reflects that.
Let, sketch inputs are denoted by x. Then the objective
function of the cGAN wil be:

LcGAN (G,D) = Ex,y[logD(x, y)]

+ Ex,z[log(1−D(x,G(x, z)))] (2)

As mentioned in the original cGAN study [7], a tradi-
tional loss is mixed with the GAN objective function. To
train the Generator U-net, L1 loss (mean absolute error) is
used in the loss function. L1 loss is calculated pixel-wise.
The model optimizes using the loss function to generate im-
ages as close to the original images. The following equation
denotes the L1 loss of the Generator:

LL1(G) = Ex,y,z[||y −G(x, z)||1] (3)

The overall objective function is

LTotal(G,D) = LcGAN (G,D) + λLL1(G) (4)

4. Experimental Evaluation

This section describes the dataset, data-preprocessing,
and result analysis.

4.1. Dataset

According to the project aim of generating colored im-
ages from sketches/edges, a relevant large-scale dataset is
selected. That is Danbooru Sketch Pair [10]: a large collec-
tion of 128x128 anime pictures and sketch pair dataset con-
verted from Danbooru2017. First, the image-sketch pairs
are extracted and then processed. Images are converted into
RGB and normalized to 0 means. Training, validation, and
test sets are created from the dataset. Due to resource lim-
itation, a portion of the dataset is used in this project. That
protion contains 7600 sketch-image pairs.

4.2. Result Analysis

First, the U-net-based generator is evaluated without us-
ing any discriminator. Then, the full cGAN architecture is
evaluated where both the generator and discriminator are
used. Finally, a qualitative comparison between these two
is shown.

4.2.1 Using only Generator component (U-net)

A U-net generator is trained on input sketches using pixel-
wise L1 loss function (Equation 3). The model is trained
using the loss function to generate images as close to the
original images. The learning curve of the training is de-
picted in Fig. 5. Both the training an validation loss do not
minimized notably after 30 epochs.

Figure 5. Learning curve of the U-net Generator

Sample generated images using U-net Generator are
shown in Fig. 6

3

(a) Sketch (b) Generated (c) Ground Truth

(d) Sketch (e) Generated (f) Ground Truth

Figure 6. Sketch to Image using U-net-based Generator

4.2.2 Using the full cGAN architecture

The full cGAN architecture is trained on input sketches us-
ing the main objective function (Equation 4). The model is
trained using the loss function to generate images as close
to the original images.

The learning curve of the generator is depicted in Fig. 7.
The generator loss is decreased through epochs. It does not
diverges much and quickly getting converged as sketches
are used as conditional input rather using only random noise
as input.

Figure 7. Generator Loss

The learning curve of the discriminator is depicted in
Fig. 8. Initially, the discriminator quickly learns to distin-
guish between real and fake images. But, eventually, the
discriminator loss increases as the generator is gradually
learning to fool the discriminator.

Sample generated images using U-net Generator are
shown in Fig. 9

Figure 8. Discriminator Loss

(a) Sketch (b) Generated (c) Ground Truth

(d) Sketch (e) Generated (f) Ground Truth

(g) Sketch (h) Generated (i) Ground Truth

(j) Sketch (k) Generated (l) Ground Truth

Figure 9. Sketch to Image using cGAN architecture

4

4.2.3 Comparison between U-net Generator (without
discriminator) and cGAN architecture (with dis-
criminator)

Finally a qualitative comparison between the U-net Genera-
tor (without discriminator) and the cGAN architecture (with
discriminator) is depicted in Fig. 10

(a) U-net (b) cGAN (c) Ground Truth

(d) U-net (e) cGAN (f) Ground Truth

(g) U-net (h) cGAN (i) Ground Truth

Figure 10. Comparison between U-net Generator (without dis-
criminator) and cGAN architecture (with discriminator)

5. Challenges

Training the cGAN seems quite difficult due to instabil-
ity. It is not always the case when model generates reason-
able output. It might occur due the mode collapse issue,
complexity, and other factors. Also, Also it was difficult to
manage the large dataset (10.8 GB) and train it without an
easily accessible GPU. So, the experiments are carried out
by using a small fraction of the full dataset and a conclusive
hyper-parameter tuning is not carried out.

6. Conclusion

In this project, a image-to-image translation algorithm -
cGAN is implemented and evaluated. Experimental results
show that it can produce reasonable colored images from
sketches which are quite close to the original image. But,
there are a lot of scopes to improve with: using more data

samples, comprehensive hyper-parameter tuning, etc. In fu-
ture, those things will be considered and re-evaluated. Also,
running this on various image-to-image translation applica-
tions would be interesting, i.e., translation of images from
day to night, translation of images from season to differ-
ent seasons, translation of edge to image, translation of se-
mantic segmentation to image, translation of satellite pho-
tographs to Google Maps, translation of black and white
photographs to color, etc.

References
[1] Doron Adler. Sketch2pokemon, Oct 2019.
[2] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,

Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8789–8797,
2018.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020.

[4] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan,
and Xilin Chen. Attgan: Facial attribute editing by only
changing what you want. IEEE transactions on image pro-
cessing, 28(11):5464–5478, 2019.

[5] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017.

[6] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[7] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[8] Yingxue Pang, Jianxin Lin, Tao Qin, and Zhibo Chen.
Image-to-image translation: Methods and applications.
arXiv preprint arXiv:2101.08629, 2021.

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

[10] Wuhecong. Danbooru sketch pair 128x, Nov 2019.
[11] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017.

5

