
Reducing Search Space in Code Smell Detection
using Change History Information

Abu Rafe Md Jamil
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

bsse0722@iit.du.ac.bd

Asadullah Hill Galib
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

bsse0712@iit.du.ac.bd

Md Nurul Ahad Tawhid
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh
tawhid@iit.du.ac.bd

Nadia Nahar
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh
nadia@iit.du.ac.bd

Abstract—Detecting code smell in large-scale projects is a
critical aspect of software maintenance. Typical code smell
detection approaches search code smell in all source files, and
this process continues in multiple phases of the development life-
cycle. That process may computationally complex for real-life
large-scale projects due to the vast size of the search space. In this
study, a simple search space reduction approach is proposed for
code smell detection based on a novel software evolution metric of
change history information. The proposed approach is evaluated
on 11 popular and large-scale projects from GitHub using code
smells dataset of four code smells - Blob, Feature Envy, Divergent
Change, Parallel Inheritance. Primarily, these four code smells
are selected to explore the applicability of the proposed search
space reduction approach. The results have shown that the
proposed metric significantly reduces the search space while
detecting a sound percentage of the actual code smell. It is
also analyzed that this approach performs considerably better
in detecting Blob, Feature Envy, and Divergent Change, while
depicting relatively poor performance for Parallel Inheritance.
In the future, other common code smells and more large-scale
projects will be analyzed using this approach.

Index Terms—software maintenance, software evolution, code
smells, search space reduction, change history

I. INTRODUCTION

A code smell is an indicator of the surface and normally
leads to a deeper problem in the network [1]. Code smells
are symptoms of poor design and choice of implementation.
In some cases, developers under pressure might trigger these
symptoms, such as installing urgent patches or simply making
sub-optimal choices. Code smells block comprehensibility and
may increase change and vulnerability [2]–[4]. Thereby, these
smells must be carefully detected and monitored, and refac-
toring actions should be planned and carried out to deal with
those whenever necessary. Otherwise, it would be problematic
to system.

The first two authors contributed equally to this work. (Corresponding
author: A. Jamil and A. Galib)

Several techniques of code smell detection have been pro-
posed. Most of the literature deals with smell detection based
on static analysis [5]–[10] and change history information
[11]–[14]. Both types of detection techniques are computation-
ally complex for large-scale projects. Mostly, these techniques
analyze all files of a system for code smell detection. For
a large-scale project, applying the techniques to all files
and multiple phases of the project would be computationally
complex.

To address this issue and speed up the detection of code
smell, a novel search space reduction approach is proposed in
this study. It presents an approach to speed up the detection
of code smells in software systems, by reducing the number
of files of the system that need to be considered by the smell
detector. Here, a new metric based on change history informa-
tion - NCPC (Number of Changes Per Commit) is introduced
for reducing the search space. To the best of the authors’
knowledge, it is the first work on search space reduction for
effective code smell detection. This study seeks to answer the
following two research questions (RQ) analytically in reducing
the search space for code smell detection:

• RQ1: How to reduce the search space using change
history information?

• RQ2: To what extent the whole search space reduction
approach works well in detecting code smell?

This study is based on the hypothesis that if any file of a
software project undergoes several changes through commits,
then it may contain one or more code smells. Especially
that smells which are intrinsically related to change history
information, may be deduced from evaluating change history
information. This hypothesis is supported by several prior
works [2]–[4], [10], [15] Here, the hypothesis is tested on
four code smells: Blob, Feature Envy, Divergent Change, and
Parallel Inheritance using 11 popular and large-scale GitHub
projects and code smells dataset [16]. Blob class or God



class is a class containing a large number of attributes and
methods. Feature Envy is a class that uses methods of another
class excessively. Divergent Change is when many changes
are made to a single class. Parallel Inheritance occurs where
an inheritance tree relies on a separate inheritance tree by
construction and has a special arrangement where one subclass
of contingent inheritance depends on one subclass of another.
The four code smells are chosen based on the availability
of such kind of dataset and to examine the feasibility of the
approach. Here, Blob and Divergent Change smells are closely
related to the change-proneness of software artifacts according
to their signs, symptoms, and reasons for the problem. The
fact is also hinted by Olbrich et al. [4], [15]. In this work,
the search space is reduced using a new metric called NCPC.
The usefulness of the metric is evaluated by how well it can
reduce the search space. Afterward, the effectiveness of the
search space reduction is evaluated based on what percentage
of the actual code smells are belonging to the reduced search
space.

Experimental results show that the proposed approach can
significantly reduce the search space while maintaining the
percentage of detected code smell. This approach performs
well for the smells - Blob, Feature Envy, and Divergent
Change, except for the Parallel Inheritance code smell. A
rationale for this variability raises intuitive discussion and
direction.

The remainder of this paper is arranged according to the fol-
lowing. Section 2 describes the Methodology of this approach
concisely. Section 3 describes the Experiments with defining
the experiment setup and dataset. Section 4 presents the Result
Analysis based on the research questions. Section 5 draws
a Discussion regarding the result and the approach. Section
6 denotes the Threats to Validity of this study. Section 7
describes the Related Work. Section 8 presents the Conclusion
that is drawn from the results and explains what the research
findings lead to.

Fig. 1. The proposed approach.

II. METHODOLOGY

This study is guided by a hypothesis based on the change
proneness of a source-code file. The change history of the
source-code file is extracted and analyzed according to the
hypothesis. Afterward, for reducing the search space, a novel
metric is introduced. For evaluation purposes, an evaluation

approach is also defined. Figure 1 depicts an overview of the
proposed approach.

A. Hypothesis

The hypothesis behind the research is as follows: If a
source-code file is change-prone, then the possibility of in-
troducing code smell belonging to that file will be increased.

That hypothesis is backed by some existing studies as well.
Khomh et al. [2], [10] analyzed that the classes with code
smells are more change-prone than others. Palomba et al.
[3] also confirmed similar observations. In their study, it is
found that classes affected by code smells have a statistically
significant higher change-proneness. Olbrich et al. [4], [15]
repeatedly found that classes that are infected with a God Class
code smell get changed significantly more often.

TABLE I
PROJECTS CONSIDERED IN THIS STUDY

Project
git

snapshot
Java
files

Blob
Feature

Envy
Divergent

change
Parallel

Inheritance
Apache Tomcat 398ca7ee 1494 5 2 1 9

Apache Cassandra 4f9e551 613 2 28 3 3
Apache Derby 562a9252 2422 9 0 0 0

Apache Commons Codec c6c8ae7a 85 1 0 0 0
Apache Ant da641025 1217 7 8 0 1

Apache Commons Lang 4af8bf41 236 3 1 1 6
Apache Commons IO c8cb451c 200 2 1 0 1

Apache Commons Logging d821ed3e 61 2 0 0 2
Android sdk 6feca9ac 1337 10 1 2 9

Google Guava e8959ed0 1178 1 0 0 0
Eclipse Core 0eb04df7 4665 4 3 1 8

B. Change History Information Extractor

A change information extractor takes the version control
repository as input. Different types of version control systems
can be used, such as SVN, CVS, or git. The git is considered
in this study and all the projects'change history are extracted
from the git version control system. The extractor mines the
versioning system log to extract the change history informa-
tion. The versioning system logs can report code changes
at the file level of granularity. In this study, any kind of
source code file modifications and deletions are considered
as changes. Newline insertions are not regarded as changes
because insertions are very common in the development of
a system which might not be a discerning characteristic in
reducing search space for code smell detection. The extractor
gives the following information as output-

• Changed filename
• Number of commits that it has changed
• Number of changes in the commits
This information is needed to define a threshold for reducing

search space. The Changed filename is required to uniquely
identify every single file.

C. Search Space Reduction Metric: NCPC

To reduce the search space and quantify the change-
proneness, a novel and simple metric associated with the
change history is proposed - Number of Changes per Commit



Fig. 2. Percentage of detected smells and optimized search space for Blob

(NCPC). NCPC can be calculated for a single file using the
equation 1.

NCPC =
number of changes in commits

number of commits that file changed
(1)

Here, the number of changes in commits denotes the total
number of changes of a file in all commits. The number of
commits that file changed denotes the total number of commits
in which the file is changed. Also, line-based modifications and
deletions are considered as changes in this study.

To speed up the reduction of search space, the NCPC metric
is kept simple and straightforward. Considering the number of
changes or size of the files might be misleading as it grows
with the increase of the system and it varies context to context.
But, changes per commit would be more reasonable as it
denotes the variability of the code segment in a single commit.
The rationale behind the idea is that many design flaws,
requirement inconsistency, developer’s lack of experience, or
other factors may lead to frequent changes in the source code
in a single commit. Consequently, code smell would also be
introduced due to those pitfalls.

The metric NCPC is used as a threshold for removing files
from the search space which are less change-prone. The files
which are more change-prone are selected as the candidate
files as those files may incite code smells. The higher the value
of the Number of Changes per Commit (NCPC) for a file,
the higher the change-prone it is. With the increase of NCPC
value, the search space is reduced simultaneously as NCPC
value induces constraints on the search space selection. But,
here is a drawback. If the search space is reduced exceedingly
using NCPC, then the percentage of code smells in the reduced
search space will also be minimized. So, the trade-off between
search space and detected code smell needs to be maintained.
An insight on this trade-off depicts in the result analysis
section.

D. Evaluation Approach
Palomba et al. [16] contributed an open dataset of several

code smells. There are 243 instances of five types of code
smells identified in 20 open-source software projects. The
smells are - Blob, Feature Envy, Divergent Change, Parallel
Inheritance, and Shotgun Surgery. In this study, the candidate
files derived by using the NCPC metric are matched with the
instances of the code smells dataset. If the file that contains an
instance of code smells dataset belongs to the candidate files
list, it will imply that the reduced search space also contains
the smelly file. Otherwise, the smell is out of the reduced
search space.

To evaluate the approach, the code smell belonging to the
reduced search space with respect to the total number of code
smells in the whole project is regarded as - percentage of
detected smells and calculated using the equation 2.

percentage of detected smells = smells in the candidate files
number of total smells

(2)
Besides, it is also considered that how well the search space
is reduced using NCPC. The reduced search space can be is
calculated using the equation 3.

reduced search space =
number of candidate files

number of total files
(3)

Evaluating the reduced search space would conducive to
the first research question. The percentage of detected smells
would help to analyze the second research question.

III. EXPERIMENTS

In the experiments, a publicly available dataset is used.
Besides, an experimental setup is defined briefly.

A. Dataset
In this study, 11 open source projects are used. The details of

the projects are described in Table I. For validation purposes,
the public code smells dataset provided by Palomba et al. [16]
is used.



TABLE II
SEARCH SPACE ACCORDING TO NCPC

NCPC Tomcat Cassandra Derby Commons
Codec Ant Android

SDK
Commons

Lang
Google
Guava

Commons
IO

Commons
Logging

Eclipse
Core

1 0.93 0.90 0.91 0.89 0.76 0.73 1.00 0.73 0.99 0.87 0.33
1.5 0.46 0.69 0.45 0.75 0.62 0.58 0.84 0.37 0.84 0.79 0.23

1.75 0.40 0.64 0.39 0.72 0.56 0.56 0.83 0.34 0.78 0.79 0.20
2.00 0.35 0.56 0.32 0.65 0.46 0.47 0.77 0.28 0.69 0.72 0.17
2.25 0.31 0.52 0.29 0.53 0.41 0.46 0.75 0.27 0.65 0.72 0.15
2.5 0.27 0.46 0.25 0.45 0.35 0.43 0.70 0.23 0.62 0.67 0.13

2.75 0.23 0.42 0.23 0.40 0.31 0.41 0.66 0.22 0.56 0.66 0.12
3.00 0.21 0.34 0.20 0.33 0.26 0.35 0.61 0.19 0.50 0.43 0.10
3.25 0.19 0.30 0.18 0.31 0.23 0.34 0.58 0.18 0.49 0.41 0.09
3.50 0.17 0.26 0.16 0.29 0.21 0.32 0.56 0.16 0.46 0.38 0.08
3.75 0.15 0.22 0.15 0.28 0.18 0.31 0.54 0.15 0.45 0.34 0.07

IV. RESULT ANALYSIS

According to the experiments, the results are thoroughly
analyzed to answer the two research questions. Regarding the
first research question, the search space reduction using the
NCPC is examined. Regarding the second research question,
the percentage of detected smells are evaluated to figure out
the applicability of the proposed approach.

A. Search Space Reduction (RQ1)

For different NCPC values, the corresponding reduced
search space for different projects are denoted in Table II.
According to the table, the search space is significantly re-
duced with respect to different NCPC values. For example, in
the project - Tomcat, when the NCPC is 1, the search space
is 93%. Whereas, if the NCPC is increased to 3, the search
space is reduced to 21%. The search space ranges from 0% to
100% for different NCPC values. So it can be concluded that
the change history information metric - NCPC metric can be
used for controlling and reducing the search space.

Fig. 3. Percentage of Detected Smells according to NCPC

B. Percentage of Detected Smells (RQ2)

For the NCPC values for different projects, the percentage
of detected smells are depicted in Table III. For instance,
considering the Apache Tomcat project, from 19% search
space (NCPC =3.25), 91% Blob, 70% Feature Envy, 63%

Divergent Change, and 28% Parallel Inheritance smells can
be found.

From Figure 2, a relationship between the reduced search
space and the percentage of detected smells for Blob in all
projects can be inferred. As the search space decreases (NCPC
values increase), the drop in the percentage of detected smells
is not significant enough for a while. According to Table III,
the percentage of detected smells remains steadily high (96%
to 67%) concerning the increasing NCPC values (1 to 5)
as well as the decreasing of the search space. But, for the
NCPC value of 10, the percentage of detected smells drops
significantly from 67% to 24%. Figure 2 and Figure 3 also
depicted that phenomenon for all code smells: an immediate
drop in the percentage of detected smells for the higher value
of NCPC.

TABLE III
ACCURACY OF CODE SMELL DETECTION

NCPC Blob Feature Envy Divergent Change Parallel Inheritance

1.0 0.96 0.84 0.75 0.51

1.5 0.96 0.84 0.63 0.44

1.75 0.96 0.84 0.63 0.44

2.0 0.93 0.84 0.63 0.38

2.25 0.93 0.82 0.63 0.38

2.50 0.93 0.82 0.63 0.38

2.75 0.93 0.80 0.63 0.36

3.0 0.91 0.75 0.63 0.31

3.25 0.91 0.70 0.63 0.28

3.5 0.83 0.70 0.63 0.26

3.75 0.83 0.61 0.63 0.23

4.0 0.76 0.57 0.63 0.15

5.0 0.67 0.48 0.63 0.05

10.0 0.24 0.05 0.13 0.05

Search space reduction using NCPC while maintaining the
percentage of detected smells is depicted in Figure 3 and
Table III for different code smells. The figures show that the
percentage of detected smells is high enough for Blob, Feature
Envy, and Divergent Change and decreases slowly regarding
the increasing values of the NCPC. However, for Parallel
Inheritance, the percentage of detected smells is relatively
low and decreases notably. This result infers that the search
space reduction approach of this study is well-suited for
Blob, Feature Envy, and Divergent Change while performing
inadequately for Parallel Inheritance.



V. DISCUSSION

According to the result analysis, the proposed approach
performs well for Blob, Divergent Change, and Feature Envy
except for Parallel Inheritance. As the change-proneness of
artifacts is considered as the basis of this approach, the re-
spective performance might be related to the change-proneness
nature of the smell.

Blob class contains a large number of attributes and meth-
ods and it is hard to maintain and increase the difficulty
to modify the software. So, it is quite reasonable that the
change-proneness of this class might be high due to its size,
functionality, and difficulty to maintain.

In the case of Divergent Change, it is an intrinsically
historical smell [11]. Divergent Change is when many changes
are made to a single class. According to its signs, symptoms,
and rationale, it is also a highly change-proneness smell. This
fact supports its relatively better performance.

For Feature Envy, as the smelly class is more interested in
another class, the change-proneness of this smelly class might
be high due to the inappropriate distribution of methods and
attributes between the two classes. However, this rationale for
its high change-proneness is arguable as the change-proneness
of Feature Envy is neither analyzed in the literature nor
explicitly derived from the definition and characteristics of it.

Parallel Inheritance occurs when an inheritance tree depends
on another inheritance tree by composition, and these maintain
a special relationship where one subclass of a dependent in-
heritance must depend on one a particular subclass of another
inheritance. Parallel Inheritance is a kind of smell in which the
detection process requires the entire system. As the approach
of this study is based on single file change-proneness, it is
clear that the approach performs poorly for this smell.

So, the change-proneness of code smell plays a crucial role
in the effectiveness of the proposed approach. It would perform
better for more change-prone smells rather than other smells.
Also, smells dealing with the entire system cannot be analyzed
properly using the proposed approach.

VI. THREATS TO VALIDITY

The code smells dataset provided by the Palomba et al.
[16] is used in this study for validation purposes. Therefore,
the dataset and their threats validity are also inherited by this
work.

In this study, all the parameters, such as different values
of NCPC, time-frames of the projects used for validation are
subject to internal threats to validity.

The external validity of this study can be called into
question regarding generalizability as only 11 projects are used
for evaluation. Moreover, only 4 code smells are investigated
while overlooking other smells. So, the lack of projects and
code smells considered in this study raise threats to external
validity.

VII. RELATED WORK

The issue of search space reduction for code smell detection
is overlooked in the existing literature. Most of the code smell

detection schemes rely on static analysis of source code. There
are a few works concerning change history information.

In HIST [11], the authors used change-history information,
such as classes' change history, methods' change history, etc.
for detecting code smells. They defined heuristics to detect
the various types of code smells, while the heuristic parameter
calibration process varies smell to smell. They worked on five
code smells - Divergent Change, Shotgun Surgery, Parallel
Inheritance, Blob, and Feature Envy. They defined a historical
detector for each smell by using association rule discovery or
by analyzing classes/ methods co-changed with the suspected
smell. Finally, HIST outperforms static code analysis for
”intrinsically historical” smells such as Divergent Change,
Shotgun Surgery, Parallel Inheritance, and performs as similar
as static code analysis for Blob and Feature Envy smells.

Ratiu et al. [12] proposed an approach for detecting smell
based on evolutionary information of problematic code com-
ponents. They defined God Class and Data Class detection
strategy by measuring the stability of classes and measuring
the persistence of a design flaw. They performed multiple
code analysis measurements of design problems during the
propagation of code components. In another work, Lozano et
al. [13] used historical information to assess the impact of
code smells on software maintenance. They suggested that by
using historical data, one can group bad smells according to
their evolution, analyze evolution measurements of bad smells,
relate flaws with later bugs.

Rao et al. [14] suggested a Design Change Propagation
Probability (DCCP) matrix for a given design, represented
different possible values of DCPP matrix as different con-
ditions, and checked for the conditions satisfied by a given
DCPP matrix and correlating these conditions with bad smells.
They focused on Shotgun Surgery and Divergent Change code
smells.

Apart from the change history base study, other works
mostly focused on static analysis for various code smell
detection. Static program analysis is the process by which the
software is evaluated without execution [17]. Here, the analysis
is carried out on some source-code versions. It is the easiest
way to analyze code because it gives a thorough overview of
the software quality and can identify several common coding
problems [18]. In detecting code smell, several works [5]–
[10] employed static analysis conclusively. However, all of
these works deal with the full search space in detecting code
smells.

In essence, to the best of the authors’ knowledge, no prior
work deals with the issue of search space reduction for code
smell detection. Most of the works concerned about how to
detect code smell and ignored the question: specifically where
to search for code smell.

VIII. CONCLUSION

This study proposes a strategy to narrow down the candidate
files for code smell detection. The strategy uses the number of
changes in the files over the number of commits as the score.
The paper also reports the evaluation of the effectiveness of the



strategy. The result shows that the proposed approach not only
reduces the search space but also maintains the percentage
of detected smells regarding the actual smells. The proposed
approach performs better for all considered smells except for
Parallel Inheritance.

The most promising implication of reducing search space
for code smell detection is in project management. By search
space reduction, cost, time, and effort for detecting code smell
in large projects can be reduced significantly. Considerable
reduction of search space while costing a minimal loss of
undetected code smells might be feasible for better project
management.

In future work, more change history information can be
considered. Besides, the implications of the proposed metric
will be investigated in other contexts. For instance, this metric
might be useful for evaluating the performance of the devel-
opers and for predicting the lifetime of individual projects as
well as the whole project.

REFERENCES

[1] Fowler, Martin. ”Refactoring: Improving the design of existing code.”
11th European Conference. Jyväskylä, Finland. 1997.

[2] Khomh, Foutse, Massimiliano Di Penta, and Yann-Gael Gueheneuc. ”An
exploratory study of the impact of code smells on software change-
proneness.” 2009 16th Working Conference on Reverse Engineering.
IEEE, 2009.

[3] Palomba, Fabio, et al. ”On the diffuseness and the impact on maintain-
ability of code smells: a large scale empirical investigation.” Empirical
Software Engineering 23.3 (2018): 1188-1221.

[4] Olbrich, Steffen, et al. ”The evolution and impact of code smells: A case
study of two open source systems.” 2009 3rd international symposium
on empirical software engineering and measurement. IEEE, 2009.

[5] Travassos, Guilherme, et al. ”Detecting defects in object-oriented de-
signs: using reading techniques to increase software quality.” ACM
Sigplan Notices 34.10 (1999): 47-56.

[6] Simon, Frank, Frank Steinbruckner, and Claus Lewerentz. ”Metrics
based refactoring.” Proceedings fifth european conference on software
maintenance and reengineering. IEEE, 2001.

[7] Marinescu, R., 2004, September. Detection strategies: Metrics-based
rules for detecting design flaws. In 20th IEEE International Conference
on Software Maintenance, 2004, (pp. 350-359). IEEE.

[8] Lanza, Michele, and Radu Marinescu. Object-oriented metrics in prac-
tice: using software metrics to characterize, evaluate, and improve the
design of object-oriented systems. Springer Science Business Media,
2007.

[9] Munro, Matthew James. ”Product metrics for automatic identification
of” bad smell” design problems in java source-code.” 11th IEEE
International Software Metrics Symposium (METRICS’05). IEEE, 2005.

[10] Khomh, Foutse, et al. ”A bayesian approach for the detection of code
and design smells.” 2009 Ninth International Conference on Quality
Software. IEEE, 2009.

[11] Palomba, Fabio, et al. ”Detecting bad smells in source code using change
history information.” 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2013.

[12] Rapu, D., et al. ”Using history information to improve design flaws
detection.” Eighth European Conference on Software Maintenance and
Reengineering, 2004. CSMR 2004. Proceedings.. IEEE, 2004.

[13] Lozano, Angela, Michel Wermelinger, and Bashar Nuseibeh. ”Assessing
the impact of bad smells using historical information.” Ninth interna-
tional workshop on Principles of software evolution: in conjunction with
the 6th ESEC/FSE joint meeting. 2007.

[14] Rao, A. Ananda, and K. Narendar Reddy. ”Detecting bad smells in object
oriented design using design change propagation probability matrix 1.”
(2007).

[15] Olbrich, Steffen M., Daniela S. Cruzes, and Dag IK Sjøberg. ”Are all
code smells harmful? A study of God Classes and Brain Classes in
the evolution of three open source systems.” 2010 IEEE International
Conference on Software Maintenance. IEEE, 2010.

[16] Palomba, Fabio, et al. ”Landfill: An open dataset of code smells
with public evaluation.” 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories. IEEE, 2015.

[17] Gomes, Ivo, et al. ”An overview on the static code analysis approach
in software development.” Faculdade de Engenharia da Universidade do
Porto, Portugal (2009).

[18] Tahmid, Ahmad, et al. ”Code sniffer: a risk based smell detection
framework to enhance code quality using static code analysis.” Inter-
national Journal of Software Engineering, Technology and Applications
2.1 (2017): 41-63.


